IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v155y2021ics0167947320301870.html
   My bibliography  Save this article

Statistical inference for inter-arrival times of extreme events in bursty time series

Author

Listed:
  • Hees, Katharina
  • Nayak, Smarak
  • Straka, Peter

Abstract

In many complex systems studied in statistical physics, inter-arrival times between events such as solar flares, trades and neuron voltages follow a heavy-tailed distribution. The set of event times is fractal-like, being dense in some time windows and empty in others, a phenomenon which has been dubbed “bursty”. A new model for the inter-exceedance times of such events above high thresholds is proposed. For high thresholds and infinite-mean waiting times, it is shown that the times between threshold crossings are Mittag-Leffler distributed, and thus form a “fractional Poisson Process” which generalizes the standard Poisson Process of threshold exceedances. Graphical means of estimating model parameters and assessing model fit are provided. The inference method is applied to an empirical bursty time series, and it is shown how the memory of the Mittag-Leffler distribution affects prediction of the time until the next extreme event.

Suggested Citation

  • Hees, Katharina & Nayak, Smarak & Straka, Peter, 2021. "Statistical inference for inter-arrival times of extreme events in bursty time series," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:csdana:v:155:y:2021:i:c:s0167947320301870
    DOI: 10.1016/j.csda.2020.107096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301870
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, J. & Fan, Y. & Sisson, S.A., 2015. "Bayesian threshold selection for extremal models using measures of surprise," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 84-99.
    2. Stindl, Tom & Chen, Feng, 2018. "Likelihood based inference for the multivariate renewal Hawkes process," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 131-145.
    3. Aban, Inmaculada B. & Meerschaert, Mark M. & Panorska, Anna K., 2006. "Parameter Estimation for the Truncated Pareto Distribution," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 270-277, March.
    4. Basrak, Bojan & Špoljarić, Drago, 2015. "Extremes of random variables observed in renewal times," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 216-221.
    5. Wheatley, Spencer & Filimonov, Vladimir & Sornette, Didier, 2016. "The Hawkes process with renewal immigration & its estimation with an EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 120-135.
    6. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    7. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pushpa Dissanayake & Teresa Flock & Johanna Meier & Philipp Sibbertsen, 2021. "Modelling Short- and Long-Term Dependencies of Clustered High-Threshold Exceedances in Significant Wave Heights," Mathematics, MDPI, vol. 9(21), pages 1-33, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.
    3. Kwame Boamah‐Addo & Tomasz J. Kozubowski & Anna K. Panorska, 2023. "A discrete truncated Zipf distribution," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 156-187, May.
    4. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    5. Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    6. Marek Arendarczyk & Tomasz J. Kozubowski & Anna K. Panorska, 2022. "The Greenwood statistic, stochastic dominance, clustering and heavy tails," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 331-352, March.
    7. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    8. Ekaterina Morozova & Vladimir Panov, 2021. "Extreme Value Analysis for Mixture Models with Heavy-Tailed Impurity," Mathematics, MDPI, vol. 9(18), pages 1-24, September.
    9. Hürlimann, Werner, 2015. "On the uniform random upper bound family of first significant digit distributions," Journal of Informetrics, Elsevier, vol. 9(2), pages 349-358.
    10. Stindl, Tom, 2023. "Forecasting intraday market risk: A marked self-exciting point process with exogenous renewals," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 182-198.
    11. Khieu, Hoang & Wälde, Klaus, 2023. "Capital income risk and the dynamics of the wealth distribution," Economic Modelling, Elsevier, vol. 122(C).
    12. Sara Ali Alokley & Mansour Saleh Albarrak, 2020. "Clustering of Extremes in Financial Returns: A Study of Developed and Emerging Markets," JRFM, MDPI, vol. 13(7), pages 1-11, July.
    13. Paola Bortot & Carlo Gaetan, 2016. "Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 531-547, September.
    14. Marta Ferreira, 2024. "Extremal index: estimation and resampling," Computational Statistics, Springer, vol. 39(5), pages 2703-2720, July.
    15. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    16. Buddana Amrutha & Kozubowski Tomasz J., 2014. "Discrete Pareto Distributions," Stochastics and Quality Control, De Gruyter, vol. 29(2), pages 143-156, December.
    17. Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.
    18. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    19. Katarzyna Górska & Andrzej Horzela, 2021. "Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character," Mathematics, MDPI, vol. 9(5), pages 1-13, February.
    20. Beirlant, J. & Schoutens, W. & Segers, J.J.J., 2004. "Mandelbrot's Extremism," Discussion Paper 2004-125, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:155:y:2021:i:c:s0167947320301870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.