IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v90y2015icp74-83.html
   My bibliography  Save this article

Sparse HDLSS discrimination with constrained data piling

Author

Listed:
  • Ahn, Jeongyoun
  • Jeon, Yongho

Abstract

Regularization is a key component in high dimensional data analyses. In high dimensional discrimination with binary classes, the phenomenon of data piling occurs when the projection of data onto a discriminant vector is dichotomous, one for each class. Regularizing the degree of data piling yields a new class of discrimination rules for high dimension–low sample size data. A discrimination method that regularizes the degree of data piling while achieving sparsity is proposed and solved via a linear programming. Computational efficiency is further improved by a sign-preserving regularization that forces the signs of the estimator to be the same as the mean difference. The proposed classifier shows competitive performances for simulated and real data examples including speech recognition and gene expressions.

Suggested Citation

  • Ahn, Jeongyoun & Jeon, Yongho, 2015. "Sparse HDLSS discrimination with constrained data piling," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 74-83.
  • Handle: RePEc:eee:csdana:v:90:y:2015:i:c:p:74-83
    DOI: 10.1016/j.csda.2015.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001036
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeongyoun Ahn & J. S. Marron, 2010. "The maximal data piling direction for discrimination," Biometrika, Biometrika Trust, vol. 97(1), pages 254-259.
    2. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
    3. Trendafilov, Nickolay T. & Jolliffe, Ian T., 2007. "DALASS: Variable selection in discriminant analysis via the LASSO," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3718-3736, May.
    4. Qing Mai & Hui Zou & Ming Yuan, 2012. "A direct approach to sparse discriminant analysis in ultra-high dimensions," Biometrika, Biometrika Trust, vol. 99(1), pages 29-42.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.
    2. Luo, Shan & Chen, Zehua, 2020. "A procedure of linear discrimination analysis with detected sparsity structure for high-dimensional multi-class classification," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    3. Mai, Qing & Zou, Hui, 2015. "Sparse semiparametric discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 175-188.
    4. Dawit G. Tadesse & Mark Carpenter, 2019. "A method for selecting the relevant dimensions for high-dimensional classification in singular vector spaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 405-426, June.
    5. Youssef Anzarmou & Abdallah Mkhadri & Karim Oualkacha, 2023. "Sparse overlapped linear discriminant analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 388-417, March.
    6. Irina Gaynanova & James G. Booth & Martin T. Wells, 2016. "Simultaneous Sparse Estimation of Canonical Vectors in the ≫ Setting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 696-706, April.
    7. He, Yong & Zhang, Xinsheng & Wang, Pingping, 2016. "Discriminant analysis on high dimensional Gaussian copula model," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 100-112.
    8. Wang, Cheng & Cao, Longbing & Miao, Baiqi, 2013. "Optimal feature selection for sparse linear discriminant analysis and its applications in gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 140-149.
    9. Gaynanova, Irina & Wang, Tianying, 2019. "Sparse quadratic classification rules via linear dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 278-299.
    10. Safo, Sandra E. & Ahn, Jeongyoun, 2016. "General sparse multi-class linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 81-90.
    11. Makoto Aoshima & Kazuyoshi Yata, 2019. "Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 473-503, June.
    12. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    13. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    14. Luca Scrucca, 2014. "Graphical tools for model-based mixture discriminant analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 147-165, June.
    15. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    16. Oda, Ryoya & Suzuki, Yuya & Yanagihara, Hirokazu & Fujikoshi, Yasunori, 2020. "A consistent variable selection method in high-dimensional canonical discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    17. J. Burez & D. Van Den Poel, 2005. "CRM at a Pay-TV Company: Using Analytical Models to Reduce Customer Attrition by Targeted Marketing for Subscription Services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/348, Ghent University, Faculty of Economics and Business Administration.
    18. Won, Joong-Ho & Lim, Johan & Yu, Donghyeon & Kim, Byung Soo & Kim, Kyunga, 2014. "Monotone false discovery rate," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 86-93.
    19. Jan, Budczies & Kosztyla, Daniel & von Törne, Christian & Stenzinger, Albrecht & Darb-Esfahani, Silvia & Dietel, Manfred & Denkert, Carsten, 2014. "cancerclass: An R Package for Development and Validation of Diagnostic Tests from High-Dimensional Molecular Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i01).
    20. Xin Huang & Gengsheng Qin & Yixin Fang, 2011. "Optimal Combinations of Diagnostic Tests Based on AUC," Biometrics, The International Biometric Society, vol. 67(2), pages 568-576, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:90:y:2015:i:c:p:74-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.