The maximal data piling direction for discrimination
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chung, Hee Cheol & Ahn, Jeongyoun, 2021. "Subspace rotations for high-dimensional outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
- Ahn, Jeongyoun & Jeon, Yongho, 2015. "Sparse HDLSS discrimination with constrained data piling," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 74-83.
- Zhao, Junguang & Xu, Xingzhong, 2016. "A generalized likelihood ratio test for normal mean when p is greater than n," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 91-104.
- Gen Li & Sungkyu Jung, 2017. "Incorporating covariates into integrated factor analysis of multi‐view data," Biometrics, The International Biometric Society, vol. 73(4), pages 1433-1442, December.
- Jung, Sungkyu, 2018. "Continuum directions for supervised dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 27-43.
- Bolivar-Cime, A. & Marron, J.S., 2013. "Comparison of binary discrimination methods for high dimension low sample size data," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 108-121.
- Makoto Aoshima & Kazuyoshi Yata, 2019. "Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 473-503, June.
- Yugo Nakayama & Kazuyoshi Yata & Makoto Aoshima, 2020. "Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1257-1286, October.
- Ursula Laa & Dianne Cook & Stuart Lee, 2020. "Burning Sage: Reversing the Curse of Dimensionality in the Visualization of High-Dimensional Data," Monash Econometrics and Business Statistics Working Papers 36/20, Monash University, Department of Econometrics and Business Statistics.
- Safo, Sandra E. & Ahn, Jeongyoun, 2016. "General sparse multi-class linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 81-90.
- Lee, Myung Hee, 2012. "On the border of extreme and mild spiked models in the HDLSS framework," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 162-168.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:97:y:2010:i:1:p:254-259. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.