IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v89y2015icp97-114.html
   My bibliography  Save this article

Generalized endpoint-inflated binomial model

Author

Listed:
  • Tian, Guo-Liang
  • Ma, Huijuan
  • Zhou, Yong
  • Deng, Dianliang

Abstract

To model binomial data with large frequencies of both zeros and right-endpoints, Deng and Zhang (in press) recently extended the zero-inflated binomial distribution to an endpoint-inflated binomial (EIB) distribution. Although they proposed the EIB mixed regression model, the major goal of Deng and Zhang (2015) is just to develop score tests for testing whether endpoint-inflation exists. However, the distributional properties of the EIB have not been explored, and other statistical inference methods for parameters of interest were not developed. In this paper, we first construct six different but equivalent stochastic representations for the EIB random variable and then extensively study the important distributional properties. Maximum likelihood estimates of parameters are obtained by both the Fisher scoring and expectation–maximization algorithms in the model without covariates. Bootstrap confidence intervals of parameters are also provided. Generalized and fixed EIB regression models are proposed and the corresponding computational procedures are introduced. A real data set is analyzed and simulations are conducted to evaluate the performance of the proposed methods. All technical details are put in a supplemental document (see Appendix A).

Suggested Citation

  • Tian, Guo-Liang & Ma, Huijuan & Zhou, Yong & Deng, Dianliang, 2015. "Generalized endpoint-inflated binomial model," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 97-114.
  • Handle: RePEc:eee:csdana:v:89:y:2015:i:c:p:97-114
    DOI: 10.1016/j.csda.2015.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315000778
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dankmar Böhning & Bruce Lindsay, 1988. "Monotonicity of quadratic-approximation algorithms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(4), pages 641-663, December.
    2. Daniel B. Hall, 2000. "Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study," Biometrics, The International Biometric Society, vol. 56(4), pages 1030-1039, December.
    3. Raydonal Ospina & Silvia Ferrari, 2010. "Inflated beta distributions," Statistical Papers, Springer, vol. 51(1), pages 111-126, January.
    4. David Todem & Wei-Wen Hsu & KyungMann Kim, 2012. "On the Efficiency of Score Tests for Homogeneity in Two-Component Parametric Models for Discrete Data," Biometrics, The International Biometric Society, vol. 68(3), pages 975-982, September.
    5. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    6. Dianliang Deng & Yu Zhang, 2015. "Score Tests for Both Extra Zeros and Extra Ones in Binomial Mixed Regression Models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(14), pages 2881-2897, July.
    7. A. M. C. Vieira & J. P. Hinde & C. G. B. Demetrio, 2000. "Zero-inflated proportion data models applied to a biological control assay," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(3), pages 373-389.
    8. Ospina, Raydonal & Ferrari, Silvia L.P., 2012. "A general class of zero-or-one inflated beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1609-1623.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Celis & Andrea Cuenca, 2016. "La educación media en Colombia: una mirada al contexto internacional," Documentos de trabajo 17663, Escuela de Gobierno - Universidad de los Andes.
    2. Obydenkova, Svetlana V. & Pearce, Joshua M., 2016. "Technical viability of mobile solar photovoltaic systems for indigenous nomadic communities in northern latitudes," Renewable Energy, Elsevier, vol. 89(C), pages 253-267.
    3. Wang, Lizhi & Pan, Rong & Wang, Xiaohong & Fan, Wenhui & Xuan, Jinquan, 2017. "A Bayesian reliability evaluation method with different types of data from multiple sources," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 128-135.
    4. Livio Finos & Fortunato Pesarin, 2020. "On zero-inflated permutation testing and some related problems," Statistical Papers, Springer, vol. 61(5), pages 2157-2174, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becky Tang & Henry A. Frye & Alan E. Gelfand & John A. Silander, 2023. "Zero-Inflated Beta Distribution Regression Modeling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 117-137, March.
    2. Harald Oberhofer & Michael Pfaffermayr, 2014. "Two-Part Models for Fractional Responses Defined as Ratios of Integers," Econometrics, MDPI, vol. 2(3), pages 1-22, September.
    3. Wei-Wen Hsu & David Todem & Kyungmann Kim, 2015. "Adjusted Supremum Score-Type Statistics for Evaluating Non-Standard Hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 746-759, September.
    4. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    5. Niklas Elert, 2014. "What determines entry? Evidence from Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 55-92, August.
    6. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    7. Lucio Masserini & Matilde Bini & Monica Pratesi, 2017. "Effectiveness of non-selective evaluation test scores for predicting first-year performance in university career: a zero-inflated beta regression approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 693-708, March.
    8. Abbas Moghimbeigi & Mohammed Reza Eshraghian & Kazem Mohammad & Brian Mcardle, 2008. "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1193-1202.
    9. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    10. Ricardo Ocaña-Riola & Carmen Pérez-Romero & Mª Isabel Ortega-Díaz & José Jesús Martín-Martín, 2021. "Multilevel Zero-One Inflated Beta Regression Model for the Analysis of the Relationship between Exogenous Health Variables and Technical Efficiency in the Spanish National Health System Hospitals," IJERPH, MDPI, vol. 18(19), pages 1-18, September.
    11. Silvia Noirjean & Mario Biggeri & Laura Forastiere & Fabrizia Mealli & Maria Nannini, 2023. "Estimating causal effects of community health financing via principal stratification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1317-1350, October.
    12. Maria Gheorghe & Susan Picavet & Monique Verschuren & Werner B. F. Brouwer & Pieter H. M. Baal, 2017. "Health losses at the end of life: a Bayesian mixed beta regression approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 723-749, June.
    13. Ehsan Bahrami Samani & Elham Tabrizi, 2023. "Joint Linear Modeling of Mixed Data and Its Application to Email Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 175-209, May.
    14. Murilo Wohlgemuth & Carlos Ernani Fries & Ângelo Márcio Oliveira Sant’Anna & Ricardo Giglio & Diego Castro Fettermann, 2020. "Assessment of the technical efficiency of Brazilian logistic operators using data envelopment analysis and one inflated beta regression," Annals of Operations Research, Springer, vol. 286(1), pages 703-717, March.
    15. Livio Finos & Fortunato Pesarin, 2020. "On zero-inflated permutation testing and some related problems," Statistical Papers, Springer, vol. 61(5), pages 2157-2174, October.
    16. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    17. Cristian Roner & Claudia Di Caterina & Davide Ferrari, 2021. "Exponential Tilting for Zero-inflated Interval Regression with Applications to Cyber Security Survey Data," BEMPS - Bozen Economics & Management Paper Series BEMPS85, Faculty of Economics and Management at the Free University of Bozen.
    18. Yury R. Benites & Vicente G. Cancho & Edwin M. M. Ortega & Roberto Vila & Gauss M. Cordeiro, 2022. "A New Regression Model on the Unit Interval: Properties, Estimation, and Application," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    19. Kathryn M. Irvine & T. J. Rodhouse & Ilai N. Keren, 2016. "Extending Ordinal Regression with a Latent Zero-Augmented Beta Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 619-640, December.
    20. Guillermo Martínez-Flórez & Roger Tovar-Falón & Carlos Barrera-Causil, 2022. "Inflated Unit-Birnbaum-Saunders Distribution," Mathematics, MDPI, vol. 10(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:89:y:2015:i:c:p:97-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.