IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v27y2000i3p373-389.html
   My bibliography  Save this article

Zero-inflated proportion data models applied to a biological control assay

Author

Listed:
  • A. M. C. Vieira
  • J. P. Hinde
  • C. G. B. Demetrio

Abstract

Biological control of pests is an important branch of entomology, providing environmentally friendly forms of crop protection. Bioassays are used to find the optimal conditions for the production of parasites and strategies for application in the field. In some of these assays, proportions are measured and, often, these data have an inflated number of zeros. In this work, six models will be applied to data sets obtained from biological control assays for Diatraea saccharalis , a common pest in sugar cane production. A natural choice for modelling proportion data is the binomial model. The second model will be an overdispersed version of the binomial model, estimated by a quasi-likelihood method. This model was initially built to model overdispersion generated by individual variability in the probability of success. When interest is only in the positive proportion data, a model can be based on the truncated binomial distribution and in its overdispersed version. The last two models include the zero proportions and are based on a finite mixture model with the binomial distribution or its overdispersed version for the positive data. Here, we will present the models, discuss their estimation and compare the results.

Suggested Citation

  • A. M. C. Vieira & J. P. Hinde & C. G. B. Demetrio, 2000. "Zero-inflated proportion data models applied to a biological control assay," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(3), pages 373-389.
  • Handle: RePEc:taf:japsta:v:27:y:2000:i:3:p:373-389
    DOI: 10.1080/02664760021673
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760021673
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760021673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Helai Huang & Hong Chin, 2010. "Modeling road traffic crashes with zero-inflation and site-specific random effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 445-462, August.
    2. Tian, Guo-Liang & Ma, Huijuan & Zhou, Yong & Deng, Dianliang, 2015. "Generalized endpoint-inflated binomial model," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 97-114.
    3. Daniel B. Hall & Jing Shen, 2010. "Robust Estimation for Zero‐Inflated Poisson Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 237-252, June.
    4. Afrânio M.C. Vieira & Roseli A. Leandro & Clarice G.B. Dem�trio & Geert Molenberghs, 2011. "Double generalized linear model for tissue culture proportion data: a Bayesian perspective," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1717-1731, September.
    5. Gning, Lucien & Ndour, Cheikh & Tchuenche, J.M., 2022. "Modeling COVID-19 daily cases in Senegal using a generalized Waring regression model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    6. María José Olmo-Jiménez & Silverio Vílchez-López & José Rodríguez-Avi, 2022. "cpd: An R Package for Complex Pearson Distributions," Mathematics, MDPI, vol. 10(21), pages 1-15, November.
    7. Jansakul, N. & Hinde, J. P., 2002. "Score Tests for Zero-Inflated Poisson Models," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 75-96, July.
    8. Cai, Tianji & Xia, Yiwei & Zhou, Yisu, 2017. "Generalized Inflated Discrete Models: A Strategy to Work with Multimodal Discrete Distributions," SocArXiv 4r2j3, Center for Open Science.
    9. H. He & W. Wang & J. Hu & R. Gallop & P. Crits-Christoph & Y. Xia, 2015. "Distribution-free inference of zero-inflated binomial data for longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2203-2219, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:27:y:2000:i:3:p:373-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.