IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v51y2017i2d10.1007_s11135-016-0433-z.html
   My bibliography  Save this article

Effectiveness of non-selective evaluation test scores for predicting first-year performance in university career: a zero-inflated beta regression approach

Author

Listed:
  • Lucio Masserini

    (University of Pisa)

  • Matilde Bini

    (European University of Rome)

  • Monica Pratesi

    (University of Pisa)

Abstract

The background preparation of students entering the university system is checked through evaluation tests in Italy. The test is non-selective in most degree programmes, as it does not preclude the possibility of enrolling in the student’s chosen program. However, the initial preparation and attitude of the students seem to be key issues in explaining their performance and predicting the performance outcome of their first-year in university. The evaluation test results are used to predict the students’ performance at the end of the first year by a zero inflated beta regression model. The analysis was conducted on the evaluation test carried out in September 2013 with students at the Department of Economics and Management, University of Pisa.

Suggested Citation

  • Lucio Masserini & Matilde Bini & Monica Pratesi, 2017. "Effectiveness of non-selective evaluation test scores for predicting first-year performance in university career: a zero-inflated beta regression approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 693-708, March.
  • Handle: RePEc:spr:qualqt:v:51:y:2017:i:2:d:10.1007_s11135-016-0433-z
    DOI: 10.1007/s11135-016-0433-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-016-0433-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-016-0433-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carmen Aina & Lorenzo Cappellari & Marco Francesconi, 2010. "Student Performance may not Improve when Universities are Choosier," CESifo Working Paper Series 3264, CESifo.
    2. Jacqueline Fleming & Nancy Garcia, 1998. "Are Standardized Tests Fair to African Americans?," The Journal of Higher Education, Taylor & Francis Journals, vol. 69(5), pages 471-495, September.
    3. Raydonal Ospina & Silvia Ferrari, 2010. "Inflated beta distributions," Statistical Papers, Springer, vol. 51(1), pages 111-126, January.
    4. Hermalin, Benjamin E. & Wallace, Nancy E., 1992. "The Determinants of Efficiency and Solvency in Savings and Loans," Department of Economics, Working Paper Series qt1nj556zf, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    5. Benjamin E. Hermalin & Nancy E. Wallace, 1994. "The Determinants of Efficiency and Solvency in Savings and Loans," RAND Journal of Economics, The RAND Corporation, vol. 25(3), pages 361-381, Autumn.
    6. Ospina, Raydonal & Ferrari, Silvia L.P., 2012. "A general class of zero-or-one inflated beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1609-1623.
    7. Simas, Alexandre B. & Barreto-Souza, Wagner & Rocha, Andréa V., 2010. "Improved estimators for a general class of beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 348-366, February.
    8. Michael J. Barclay & Clifford W. Smith & Ross L. Watts, 1995. "The Determinants Of Corporate Leverage And Dividend Policies," Journal of Applied Corporate Finance, Morgan Stanley, vol. 7(4), pages 4-19, January.
    9. Stasinopoulos, D. Mikis & Rigby, Robert A., 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i07).
    10. By Vincenzo Carrieri & Marcello D’Amato & Roberto Zotti, 2015. "On the causal effects of selective admission policies on students’ performances: evidence from a quasi-experiment in a large Italian university," Oxford Economic Papers, Oxford University Press, vol. 67(4), pages 1034-1056.
    11. Barndorff-Nielsen, O. E. & Jørgensen, B., 1991. "Some parametric models on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 39(1), pages 106-116, October.
    12. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    13. Cox, Christopher, 1996. "Nonlinear quasi-likelihood models: applications to continuous proportions," Computational Statistics & Data Analysis, Elsevier, vol. 21(4), pages 449-461, April.
    14. Paolino, Philip, 2001. "Maximum Likelihood Estimation of Models with Beta-Distributed Dependent Variables," Political Analysis, Cambridge University Press, vol. 9(4), pages 325-346, January.
    15. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    16. Geiser, Saul & Maria Veronica Santelices, 2007. "Validity Of High-School Grades In Predicting Student Success Beyond The Freshman Year: High-School Record vs. Standardized Tests as Indicators of Four-Year College Outcomes," University of California at Berkeley, Center for Studies in Higher Education qt7306z0zf, Center for Studies in Higher Education, UC Berkeley.
    17. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cavalletti, Barbara & Corsi, Matteo & Persico, Luca & di Bella, Enrico, 2021. "Public university orientation for high-school students. A quasi-experimental assessment of the efficiency gains from nudging better career choices," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    2. Hildete P. Pinheiro & Rafael P. Maia & Eufrásio A. Lima Neto & Mariana Rodrigues-Motta, 2019. "Zero-one augmented beta and zero-inflated discrete models with heterogeneous dispersion for the analysis of student academic performance," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 749-767, December.
    3. Hanna Dudek & Wiesław Szczesny, 2021. "Multidimensional material deprivation in Poland: a focus on changes in 2015–2017," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(2), pages 741-763, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillip Li, 2018. "Efficient MCMC estimation of inflated beta regression models," Computational Statistics, Springer, vol. 33(1), pages 127-158, March.
    2. Ospina, Raydonal & Ferrari, Silvia L.P., 2012. "A general class of zero-or-one inflated beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1609-1623.
    3. Jay Verkuilen & Michael Smithson, 2012. "Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution," Journal of Educational and Behavioral Statistics, , vol. 37(1), pages 82-113, February.
    4. Diego Ramos Canterle & Fábio Mariano Bayer, 2019. "Variable dispersion beta regressions with parametric link functions," Statistical Papers, Springer, vol. 60(5), pages 1541-1567, October.
    5. José M. R. Murteira & Joaquim J. S. Ramalho, 2016. "Regression Analysis of Multivariate Fractional Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 515-552, April.
    6. Esmeralda A. Ramalho & Joaquim J.S. Ramalho & José M.R. Murteira, 2011. "Alternative Estimating And Testing Empirical Strategies For Fractional Regression Models," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 19-68, February.
    7. Oscar Melo & Carlos Melo & Jorge Mateu, 2015. "Distance-based beta regression for prediction of mutual funds," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 83-106, January.
    8. S. Turkan & G. Özel, 2014. "Modeling destructive earthquake casualties based on a comparative study for Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1093-1110, June.
    9. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    10. Harald Oberhofer & Michael Pfaffermayr, 2014. "Two-Part Models for Fractional Responses Defined as Ratios of Integers," Econometrics, MDPI, vol. 2(3), pages 1-22, September.
    11. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
    12. Reboul, E. & Guérin, I. & Nordman, C.J., 2021. "The gender of debt and credit: Insights from rural Tamil Nadu," World Development, Elsevier, vol. 142(C).
    13. Yury R. Benites & Vicente G. Cancho & Edwin M. M. Ortega & Roberto Vila & Gauss M. Cordeiro, 2022. "A New Regression Model on the Unit Interval: Properties, Estimation, and Application," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    14. Xiong, Qizhou, 2015. "Censored Fractional Response Model: Estimating Heterogeneous Relative Risk Aversion of European Households," IWH Discussion Papers 11/2015, Halle Institute for Economic Research (IWH).
    15. Guillermo Martínez-Flórez & Roger Tovar-Falón & Carlos Barrera-Causil, 2022. "Inflated Unit-Birnbaum-Saunders Distribution," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
    16. Hildete P. Pinheiro & Rafael P. Maia & Eufrásio A. Lima Neto & Mariana Rodrigues-Motta, 2019. "Zero-one augmented beta and zero-inflated discrete models with heterogeneous dispersion for the analysis of student academic performance," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 749-767, December.
    17. Maria Gheorghe & Werner Brouwer & Pieter Baal, 2015. "Did the health of the Dutch population improve between 2001 and 2008? Investigating age- and gender-specific trends in quality of life," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 16(8), pages 801-811, November.
    18. Guillermo Martínez-Flórez & Heleno Bolfarine & Héctor Gómez, 2015. "Doubly censored power-normal regression models with inflation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 265-286, June.
    19. Josip Glaurdić & Vuk Vuković, 2015. "Prosperity and peace: Economic interests and war legacy in Croatia’s EU referendum vote," European Union Politics, , vol. 16(4), pages 577-600, December.
    20. Guillermo Martínez-Flórez & Hector W. Gomez & Roger Tovar-Falón, 2021. "Modeling Proportion Data with Inflation by Using a Power-Skew-Normal/Logit Mixture Model," Mathematics, MDPI, vol. 9(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:51:y:2017:i:2:d:10.1007_s11135-016-0433-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.