IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v85y2015icp37-53.html
   My bibliography  Save this article

A fast EM algorithm for fitting joint models of a binary response and multiple longitudinal covariates subject to detection limits

Author

Listed:
  • Bernhardt, Paul W.
  • Zhang, Daowen
  • Wang, Huixia Judy

Abstract

Joint modeling techniques have become a popular strategy for studying the association between a response and one or more longitudinal covariates. Motivated by the GenIMS study, where it is of interest to model the event of survival using censored longitudinal biomarkers, a joint model is proposed for describing the relationship between a binary outcome and multiple longitudinal covariates subject to detection limits. A fast, approximate EM algorithm is developed that reduces the dimension of integration in the E-step of the algorithm to one, regardless of the number of random effects in the joint model. Numerical studies demonstrate that the proposed approximate EM algorithm leads to satisfactory parameter and variance estimates in situations with and without censoring on the longitudinal covariates. The approximate EM algorithm is applied to analyze the GenIMS data set.

Suggested Citation

  • Bernhardt, Paul W. & Zhang, Daowen & Wang, Huixia Judy, 2015. "A fast EM algorithm for fitting joint models of a binary response and multiple longitudinal covariates subject to detection limits," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 37-53.
  • Handle: RePEc:eee:csdana:v:85:y:2015:i:c:p:37-53
    DOI: 10.1016/j.csda.2014.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731400334X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernhardt, Paul W. & Wang, Huixia Judy & Zhang, Daowen, 2014. "Flexible modeling of survival data with covariates subject to detection limits via multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 81-91.
    2. C. Y. Wang & Naisyin Wang & Suojin Wang, 2000. "Regression Analysis When Covariates Are Regression Parameters of a Random Effects Model for Observed Longitudinal Measurements," Biometrics, The International Biometric Society, vol. 56(2), pages 487-495, June.
    3. Erning Li & Naisyin Wang & Nae-Yuh Wang, 2007. "Joint Models for a Primary Endpoint and Multiple Longitudinal Covariate Processes," Biometrics, The International Biometric Society, vol. 63(4), pages 1068-1078, December.
    4. Thomas R. Ten Have & Michael E. Miller & Beth A. Reboussin & Margaret K. James, 2000. "Mixed Effects Logistic Regression Models for Longitudinal Ordinal Functional Response Data with Multiple-Cause Drop-Out from the Longitudinal Study of Aging," Biometrics, The International Biometric Society, vol. 56(1), pages 279-287, March.
    5. Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre, 2009. "Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 637-654, June.
    6. Li, Erning & Zhang, Daowen & Davidian, Marie, 2007. "Likelihood and pseudo-likelihood methods for semiparametric joint models for a primary endpoint and longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5776-5790, August.
    7. Erning Li & Daowen Zhang & Marie Davidian, 2004. "Conditional Estimation for Generalized Linear Models When Covariates Are Subject-Specific Parameters in a Mixed Model for Longitudinal Measurements," Biometrics, The International Biometric Society, vol. 60(1), pages 1-7, March.
    8. Robert H. Lyles & Cynthia M. Lyles & Douglas J. Taylor, 2000. "Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop‐outs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(4), pages 485-497.
    9. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    10. Martin, Andrew D. & Quinn, Kevin M. & Park, Jong Hee, 2011. "MCMCpack: Markov Chain Monte Carlo in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i09).
    11. Hwang, Yi-Ting & Tsai, Hao-Yun & Chang, Yeu-Jhy & Kuo, Hsun-Chih & Wang, Chun-Chao, 2011. "The joint model of the logistic model and linear random effect model -- An application to predict orthostatic hypertension for subacute stroke patients," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 914-923, January.
    12. Francis Pike & Lisa Weissfeld, 2013. "Joint modeling of censored longitudinal and event time data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(1), pages 17-27, January.
    13. Wu L., 2002. "A Joint Model for Nonlinear Mixed-Effects Models With Censoring and Covariates Measured With Error, With Application to AIDS Studies," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 955-964, December.
    14. Ying Yuan & Roderick J. A. Little, 2009. "Mixed-Effect Hybrid Models for Longitudinal Data with Nonignorable Dropout," Biometrics, The International Biometric Society, vol. 65(2), pages 478-486, June.
    15. Proust-Lima, Cécile & Joly, Pierre & Dartigues, Jean-François & Jacqmin-Gadda, Hélène, 2009. "Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1142-1154, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murray, James & Philipson, Pete, 2023. "Fast estimation for generalised multivariate joint models using an approximate EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Maire, Florian & Moulines, Eric & Lefebvre, Sidonie, 2017. "Online EM for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 27-47.
    3. Lili Wang & Sunit Mistry & Abdulkadir Abdulahi Hasan & Abdiaziz Omar Hassan & Yousuf Islam & Frimpong Atta Junior Osei, 2023. "Implementation of a Collaborative Recommendation System Based on Multi-Clustering," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    4. Toshihiro Misumi, 2022. "Joint modeling for longitudinal covariate and binary outcome via h-likelihood," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1225-1243, December.
    5. Murray, James & Philipson, Pete, 2022. "A fast approximate EM algorithm for joint models of survival and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    6. González, M. & Minuesa, C. & del Puerto, I., 2016. "Maximum likelihood estimation and expectation–maximization algorithm for controlled branching processes," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 209-227.
    7. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duchwan Ryu & Erning Li & Bani K. Mallick, 2011. "Bayesian Nonparametric Regression Analysis of Data with Random Effects Covariates from Longitudinal Measurements," Biometrics, The International Biometric Society, vol. 67(2), pages 454-466, June.
    2. Li, Erning & Pourahmadi, Mohsen, 2013. "An alternative REML estimation of covariance matrices in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1071-1077.
    3. Murray, James & Philipson, Pete, 2022. "A fast approximate EM algorithm for joint models of survival and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    4. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    5. Hongbin Zhang & Lang Wu, 2018. "A non‐linear model for censored and mismeasured time varying covariates in survival models, with applications in human immunodeficiency virus and acquired immune deficiency syndrome studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1437-1450, November.
    6. Andrew T. Karl & Yan Yang & Sharon L. Lohr, 2013. "A Correlated Random Effects Model for Nonignorable Missing Data in Value-Added Assessment of Teacher Effects," Journal of Educational and Behavioral Statistics, , vol. 38(6), pages 577-603, December.
    7. Erning Li & Naisyin Wang & Nae-Yuh Wang, 2007. "Joint Models for a Primary Endpoint and Multiple Longitudinal Covariate Processes," Biometrics, The International Biometric Society, vol. 63(4), pages 1068-1078, December.
    8. Xianzheng Huang & Leonard A. Stefanski & Marie Davidian, 2009. "Latent-Model Robustness in Joint Models for a Primary Endpoint and a Longitudinal Process," Biometrics, The International Biometric Society, vol. 65(3), pages 719-727, September.
    9. De la Cruz, Rolando & Meza, Cristian & Arribas-Gil, Ana & Carroll, Raymond J., 2016. "Bayesian regression analysis of data with random effects covariates from nonlinear longitudinal measurements," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 94-106.
    10. Li, Erning & Zhang, Daowen & Davidian, Marie, 2007. "Likelihood and pseudo-likelihood methods for semiparametric joint models for a primary endpoint and longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5776-5790, August.
    11. Samuel Iddi & Geert Molenberghs, 2012. "A joint marginalized multilevel model for longitudinal outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2413-2430, July.
    12. Brent A Coull, 2011. "A Random Intercepts–Functional Slopes Model for Flexible Assessment of Susceptibility in Longitudinal Designs," Biometrics, The International Biometric Society, vol. 67(2), pages 486-494, June.
    13. Philipson, Pete & Hickey, Graeme L. & Crowther, Michael J. & Kolamunnage-Dona, Ruwanthi, 2020. "Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    14. Zhang, Cuihong & Ning, Jing & Cai, Jianwen & Squires, James E. & Belle, Steven H. & Li, Ruosha, 2024. "Dynamic risk score modeling for multiple longitudinal risk factors and survival," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    15. Murray, James & Philipson, Pete, 2023. "Fast estimation for generalised multivariate joint models using an approximate EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    16. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    17. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    18. Getachew A. Dagne, 2016. "A growth mixture Tobit model: application to AIDS studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(7), pages 1174-1185, July.
    19. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    20. Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:85:y:2015:i:c:p:37-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.