IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i11p2413-2430.html
   My bibliography  Save this article

A joint marginalized multilevel model for longitudinal outcomes

Author

Listed:
  • Samuel Iddi
  • Geert Molenberghs

Abstract

The shared-parameter model and its so-called hierarchical or random-effects extension are widely used joint modeling approaches for a combination of longitudinal continuous, binary, count, missing, and survival outcomes that naturally occurs in many clinical and other studies. A random effect is introduced and shared or allowed to differ between two or more repeated measures or longitudinal outcomes, thereby acting as a vehicle to capture association between the outcomes in these joint models. It is generally known that parameter estimates in a linear mixed model (LMM) for continuous repeated measures or longitudinal outcomes allow for a marginal interpretation, even though a hierarchical formulation is employed. This is not the case for the generalized linear mixed model (GLMM), that is, for non-Gaussian outcomes. The aforementioned joint models formulated for continuous and binary or two longitudinal binomial outcomes, using the LMM and GLMM, will naturally have marginal interpretation for parameters associated with the continuous outcome but a subject-specific interpretation for the fixed effects parameters relating covariates to binary outcomes. To derive marginally meaningful parameters for the binary models in a joint model, we adopt the marginal multilevel model (MMM) due to Heagerty [13] and Heagerty and Zeger [14] and formulate a joint MMM for two longitudinal responses. This enables to (1) capture association between the two responses and (2) obtain parameter estimates that have a population-averaged interpretation for both outcomes. The model is applied to two sets of data. The results are compared with those obtained from the existing approaches such as generalized estimating equations, GLMM, and the model of Heagerty [13]. Estimates were found to be very close to those from single analysis per outcome but the joint model yields higher precision and allows for quantifying the association between outcomes. Parameters were estimated using maximum likelihood. The model is easy to fit using available tools such as the SAS NLMIXED procedure.

Suggested Citation

  • Samuel Iddi & Geert Molenberghs, 2012. "A joint marginalized multilevel model for longitudinal outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2413-2430, July.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:11:p:2413-2430
    DOI: 10.1080/02664763.2012.711302
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.711302
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.711302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Y. Wang & Naisyin Wang & Suojin Wang, 2000. "Regression Analysis When Covariates Are Regression Parameters of a Random Effects Model for Observed Longitudinal Measurements," Biometrics, The International Biometric Society, vol. 56(2), pages 487-495, June.
    2. Erning Li & Naisyin Wang & Nae-Yuh Wang, 2007. "Joint Models for a Primary Endpoint and Multiple Longitudinal Covariate Processes," Biometrics, The International Biometric Society, vol. 63(4), pages 1068-1078, December.
    3. Geert Verbeke & Geert Molenberghs, 2003. "The Use of Score Tests for Inference on Variance Components," Biometrics, The International Biometric Society, vol. 59(2), pages 254-262, June.
    4. Patrick J. Heagerty, 1999. "Marginally Specified Logistic-Normal Models for Longitudinal Binary Data," Biometrics, The International Biometric Society, vol. 55(3), pages 688-698, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    2. Gul Inan & Ozlem Ilk, 2019. "A marginalized multilevel model for bivariate longitudinal binary data," Statistical Papers, Springer, vol. 60(3), pages 601-628, June.
    3. Anna Ivanova & Geert Molenberghs & Geert Verbeke, 2017. "Mechanism for missing data incorporated in joint modelling of ordinal responses," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 1049-1064, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duchwan Ryu & Erning Li & Bani K. Mallick, 2011. "Bayesian Nonparametric Regression Analysis of Data with Random Effects Covariates from Longitudinal Measurements," Biometrics, The International Biometric Society, vol. 67(2), pages 454-466, June.
    2. Bernhardt, Paul W. & Zhang, Daowen & Wang, Huixia Judy, 2015. "A fast EM algorithm for fitting joint models of a binary response and multiple longitudinal covariates subject to detection limits," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 37-53.
    3. Benjamin R. Saville & Amy H. Herring, 2009. "Testing Random Effects in the Linear Mixed Model Using Approximate Bayes Factors," Biometrics, The International Biometric Society, vol. 65(2), pages 369-376, June.
    4. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
    5. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    6. Kenneth J. Wilkins & Garrett M. Fitzmaurice, 2006. "A Hybrid Model for Nonignorable Dropout in Longitudinal Binary Responses," Biometrics, The International Biometric Society, vol. 62(1), pages 168-176, March.
    7. Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
    8. Jonathan S. Schildcrout & Patrick J. Heagerty, 2007. "Marginalized Models for Moderate to Long Series of Longitudinal Binary Response Data," Biometrics, The International Biometric Society, vol. 63(2), pages 322-331, June.
    9. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    10. Raymond J. Carroll, 2003. "Variances Are Not Always Nuisance Parameters," Biometrics, The International Biometric Society, vol. 59(2), pages 211-220, June.
    11. Jane Osburn, 2011. "A Latent Variable Approach to Examining the Effects of HR Policies on the Inter- and Intra-Establishment Wage and Employment Structure: A Study of Two Precision Manufacturing Industries," Working Papers 451, U.S. Bureau of Labor Statistics.
    12. Li, Erning & Pourahmadi, Mohsen, 2013. "An alternative REML estimation of covariance matrices in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1071-1077.
    13. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    14. Iddi, Samuel & Molenberghs, Geert, 2012. "A combined overdispersed and marginalized multilevel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1944-1951.
    15. Keunbaik Lee & Michael J. Daniels, 2007. "A Class of Markov Models for Longitudinal Ordinal Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1060-1067, December.
    16. B. C. Sutradhar, 2008. "On auto-regression type dynamic mixed models for binary panel data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 209-221.
    17. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.
    18. Bruce J. Swihart & Brian S. Caffo & Ciprian M. Crainiceanu, 2014. "A Unifying Framework for Marginalised Random-Intercept Models of Correlated Binary Outcomes," International Statistical Review, International Statistical Institute, vol. 82(2), pages 275-295, August.
    19. Erning Li & Naisyin Wang & Nae-Yuh Wang, 2007. "Joint Models for a Primary Endpoint and Multiple Longitudinal Covariate Processes," Biometrics, The International Biometric Society, vol. 63(4), pages 1068-1078, December.
    20. Morris Nathan J & Elston Robert & Stein Catherine M, 2009. "Calculating Asymptotic Significance Levels of the Constrained Likelihood Ratio Test with Application to Multivariate Genetic Linkage Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-34, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:11:p:2413-2430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.