IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v40y2015i5p530-543.html
   My bibliography  Save this article

Stan

Author

Listed:
  • Andrew Gelman

    (Columbia University)

  • Daniel Lee

    (Columbia University)

  • Jiqiang Guo

    (Columbia University)

Abstract

Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users’ and developers’ perspectives and illustrate with a simple but nontrivial nonlinear regression example.

Suggested Citation

  • Andrew Gelman & Daniel Lee & Jiqiang Guo, 2015. "Stan," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 530-543, October.
  • Handle: RePEc:sae:jedbes:v:40:y:2015:i:5:p:530-543
    DOI: 10.3102/1076998615606113
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998615606113
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998615606113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patil, Anand & Huard, David & Fonnesbeck, Christopher J., 2010. "PyMC: Bayesian Stochastic Modelling in Python," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i04).
    2. Rabe-Hesketh, Sophia & Skrondal, Anders & Pickles, Andrew, 2005. "Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects," Journal of Econometrics, Elsevier, vol. 128(2), pages 301-323, October.
    3. Martin, Andrew D. & Quinn, Kevin M. & Park, Jong Hee, 2011. "MCMCpack: Markov Chain Monte Carlo in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i09).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    2. Gächter, Simon & Starmer, Chris & Tufano, Fabio, 2022. "Measuring "Group Cohesion" to Reveal the Power of Social Relationships in Team Production," IZA Discussion Papers 15512, Institute of Labor Economics (IZA).
    3. Bruzzone, Octavio A. & Logarzo, Guillermo A. & Aguirre, María B. & Virla, Eduardo G., 2018. "Intra-host interspecific larval parasitoid competition solved using modelling and bayesian statistics," Ecological Modelling, Elsevier, vol. 385(C), pages 114-123.
    4. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    5. Saul Estrin & Julia Korosteleva & Tomasz Mickiewicz, 2022. "Schumpeterian Entry: Innovation, Exporting, and Growth Aspirations of Entrepreneurs," Entrepreneurship Theory and Practice, , vol. 46(2), pages 269-296, March.
    6. Godager, Geir & Iversen, Tor & Ma, Ching-to Albert, 2015. "Competition, gatekeeping, and health care access," Journal of Health Economics, Elsevier, vol. 39(C), pages 159-170.
    7. Namin, Aidin & Soysal, Gonca P. & Ratchford, Brian T., 2022. "Alleviating demand uncertainty for seasonal goods: An analysis of attribute-based markdown policy for fashion retailers," Journal of Business Research, Elsevier, vol. 145(C), pages 671-681.
    8. Lawrence Choo & Todd R. Kaplan & Ro’i Zultan, 2019. "Information aggregation in Arrow–Debreu markets: an experiment," Experimental Economics, Springer;Economic Science Association, vol. 22(3), pages 625-652, September.
    9. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    10. Kathryn Whetten & Jan Ostermann & Brian W Pence & Rachel A Whetten & Lynne C Messer & Sumedha Ariely & Karen O'Donnell & Augustine I Wasonga & Vanroth Vann & Dafrosa Itemba & Misganaw Eticha & Ira Mad, 2014. "Three-Year Change in the Wellbeing of Orphaned and Separated Children in Institutional and Family-Based Care Settings in Five Low- and Middle-Income Countries," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    11. Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
    12. Rabe-Hesketh, Sophia & Skrondal, Anders, 2013. "Avoiding biased versions of Wooldridge’s simple solution to the initial conditions problem," Economics Letters, Elsevier, vol. 120(2), pages 346-349.
    13. Baştürk, Nalan & Grassi, Stefano & Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2017. "The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i01).
    14. Raymond, Wladimir & Mairesse, Jacques & Mohnen, Pierre & Palm, Franz, 2015. "Dynamic models of R & D, innovation and productivity: Panel data evidence for Dutch and French manufacturing," European Economic Review, Elsevier, vol. 78(C), pages 285-306.
    15. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    16. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    17. Eijffinger, Sylvester & Mahieu, Ronald & Raes, Louis, 2018. "Inferring hawks and doves from voting records," European Journal of Political Economy, Elsevier, vol. 51(C), pages 107-120.
    18. Chadha, Alka, 2009. "TRIPs and patenting activity: Evidence from the Indian pharmaceutical industry," Economic Modelling, Elsevier, vol. 26(2), pages 499-505, March.
    19. Stefan Hochguertel & Henry Ohlsson, 2009. "Compensatory inter vivos gifts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 993-1023.
    20. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:40:y:2015:i:5:p:530-543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.