IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v40y2013i1p17-27.html
   My bibliography  Save this article

Joint modeling of censored longitudinal and event time data

Author

Listed:
  • Francis Pike
  • Lisa Weissfeld

Abstract

Censoring of a longitudinal outcome often occurs when data are collected in a biomedical study and where the interest is in the survival and or longitudinal experiences of a study population. In the setting considered herein, we encountered upper and lower censored data as the result of restrictions imposed on measurements from a kinetic model producing “biologically implausible” kidney clearances. The goal of this paper is to outline the use of a joint model to determine the association between a censored longitudinal outcome and a time to event endpoint. This paper extends Guo and Carlin's [6] paper to accommodate censored longitudinal data, in a commercially available software platform, by linking a mixed effects Tobit model to a suitable parametric survival distribution. Our simulation results showed that our joint Tobit model outperforms a joint model made up of the more naïve or “fill-in” method for the longitudinal component. In this case, the upper and/or lower limits of censoring are replaced by the limit of detection. We illustrated the use of this approach with example data from the hemodialysis (HEMO) study [3] and examined the association between doubly censored kidney clearance values and survival.

Suggested Citation

  • Francis Pike & Lisa Weissfeld, 2013. "Joint modeling of censored longitudinal and event time data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(1), pages 17-27, January.
  • Handle: RePEc:taf:japsta:v:40:y:2013:i:1:p:17-27
    DOI: 10.1080/02664763.2012.725468
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.725468
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.725468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernhardt, Paul W. & Zhang, Daowen & Wang, Huixia Judy, 2015. "A fast EM algorithm for fitting joint models of a binary response and multiple longitudinal covariates subject to detection limits," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 37-53.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:40:y:2013:i:1:p:17-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.