IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v189y2024ics0167947323001482.html
   My bibliography  Save this article

Dynamic risk score modeling for multiple longitudinal risk factors and survival

Author

Listed:
  • Zhang, Cuihong
  • Ning, Jing
  • Cai, Jianwen
  • Squires, James E.
  • Belle, Steven H.
  • Li, Ruosha

Abstract

Modeling disease risk and survival using longitudinal risk factor trajectories is of interest in various clinical scenarios. The capacity to build a prognostic model using the trajectories of multiple longitudinal risk factors, in the presence of potential dependent censoring, would enable more informed, personalized decision making. A dynamic risk score modeling framework is proposed for multiple longitudinal risk factors and survival in the presence of dependent censoring, where both events depend on participants' post-baseline clinical progression and form a competing risks structure. The model requires relatively few random effects regardless of the number of longitudinal risk factors and can therefore accommodate multiple longitudinal risk factors in a parsimonious manner. The proposed method performed satisfactorily in extensive simulation studies. It is further applied to the motivating registry study on pediatric acute liver failure to model death using the trajectories of multiple clinical and biochemical markers. Once established, the model yields an easily calculable longitudinal risk score that can be used for disease monitoring among future patients.

Suggested Citation

  • Zhang, Cuihong & Ning, Jing & Cai, Jianwen & Squires, James E. & Belle, Steven H. & Li, Ruosha, 2024. "Dynamic risk score modeling for multiple longitudinal risk factors and survival," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:csdana:v:189:y:2024:i:c:s0167947323001482
    DOI: 10.1016/j.csda.2023.107837
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323001482
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    2. Philipson, Pete & Hickey, Graeme L. & Crowther, Michael J. & Kolamunnage-Dona, Ruwanthi, 2020. "Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    3. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    4. Hongyuan Cao & Mathew M. Churpek & Donglin Zeng & Jason P. Fine, 2015. "Analysis of the Proportional Hazards Model With Sparse Longitudinal Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1187-1196, September.
    5. Robert M. Elashoff & Gang Li & Ning Li, 2008. "A Joint Model for Longitudinal Measurements and Survival Data in the Presence of Multiple Failure Types," Biometrics, The International Biometric Society, vol. 64(3), pages 762-771, September.
    6. Peng, Mengjiao & Xiang, Liming & Wang, Shanshan, 2018. "Semiparametric regression analysis of clustered survival data with semi-competing risks," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 53-70.
    7. Dongdong Li & X. Joan Hu & Rui Wang, 2023. "Evaluating Association Between Two Event Times with Observations Subject to Informative Censoring," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1282-1294, April.
    8. Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre, 2009. "Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 637-654, June.
    9. Murray, James & Philipson, Pete, 2022. "A fast approximate EM algorithm for joint models of survival and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    10. Xuelin Huang & Robert A. Wolfe, 2002. "A Frailty Model for Informative Censoring," Biometrics, The International Biometric Society, vol. 58(3), pages 510-520, September.
    11. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    12. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    13. Rizopoulos, Dimitris, 2010. "JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i09).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    2. Philipson, Pete & Hickey, Graeme L. & Crowther, Michael J. & Kolamunnage-Dona, Ruwanthi, 2020. "Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    3. Murray, James & Philipson, Pete, 2022. "A fast approximate EM algorithm for joint models of survival and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    4. Murray, James & Philipson, Pete, 2023. "Fast estimation for generalised multivariate joint models using an approximate EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    5. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    6. Xavier Piulachs & Ramon Alemany & Montserrat Guillen, 2014. "A joint longitudinal and survival model with health care usage for insured elderly," Working Papers 2014-07, Universitat de Barcelona, UB Riskcenter.
    7. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    8. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    9. Lisa M. McCrink & Adele H. Marshall & Karen J. Cairns, 2013. "Advances in Joint Modelling: A Review of Recent Developments with Application to the Survival of End Stage Renal Disease Patients," International Statistical Review, International Statistical Institute, vol. 81(2), pages 249-269, August.
    10. Solène Desmée & France Mentré & Christine Veyrat-Follet & Bernard Sébastien & Jérémie Guedj, 2017. "Using the SAEM algorithm for mechanistic joint models characterizing the relationship between nonlinear PSA kinetics and survival in prostate cancer patients," Biometrics, The International Biometric Society, vol. 73(1), pages 305-312, March.
    11. Karl, Andrew T. & Yang, Yan & Lohr, Sharon L., 2014. "Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 146-162.
    12. Zhuowei Sun & Hongyuan Cao & Li Chen, 2022. "Regression analysis of additive hazards model with sparse longitudinal covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 263-281, April.
    13. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    14. Dimitris Rizopoulos & Geert Verbeke & Geert Molenberghs, 2010. "Multiple-Imputation-Based Residuals and Diagnostic Plots for Joint Models of Longitudinal and Survival Outcomes," Biometrics, The International Biometric Society, vol. 66(1), pages 20-29, March.
    15. Marlena Maziarz & Patrick Heagerty & Tianxi Cai & Yingye Zheng, 2017. "On longitudinal prediction with time-to-event outcome: Comparison of modeling options," Biometrics, The International Biometric Society, vol. 73(1), pages 83-93, March.
    16. Carles Serrat & Montserrat Ru� & Carmen Armero & Xavier Piulachs & H�ctor Perpi��n & Anabel Forte & �lvaro P�ez & Guadalupe G�mez, 2015. "Frequentist and Bayesian approaches for a joint model for prostate cancer risk and longitudinal prostate-specific antigen data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1223-1239, June.
    17. Kamaryn T. Tanner & Linda D. Sharples & Rhian M. Daniel & Ruth H. Keogh, 2021. "Dynamic survival prediction combining landmarking with a machine learning ensemble: Methodology and empirical comparison," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 3-30, January.
    18. Liang Li & Sheng Luo & Bo Hu & Tom Greene, 2017. "Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 357-378, December.
    19. Graeme L. Hickey & Pete Philipson & Andrea Jorgensen & Ruwanthi Kolamunnage‐Dona, 2018. "A comparison of joint models for longitudinal and competing risks data, with application to an epilepsy drug randomized controlled trial," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1105-1123, October.
    20. Bernhardt, Paul W. & Zhang, Daowen & Wang, Huixia Judy, 2015. "A fast EM algorithm for fitting joint models of a binary response and multiple longitudinal covariates subject to detection limits," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 37-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:189:y:2024:i:c:s0167947323001482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.