IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v38y2013i6p577-603.html
   My bibliography  Save this article

A Correlated Random Effects Model for Nonignorable Missing Data in Value-Added Assessment of Teacher Effects

Author

Listed:
  • Andrew T. Karl

    (Adsurgo LLC)

  • Yan Yang

    (Arizona State University)

  • Sharon L. Lohr

    (Westat)

Abstract

Value-added models have been widely used to assess the contributions of individual teachers and schools to students’ academic growth based on longitudinal student achievement outcomes. There is concern, however, that ignoring the presence of missing values, which are common in longitudinal studies, can bias teachers’ value-added scores. In this article, a flexible correlated random effects model is developed that jointly models the student responses and the student missing data indicators. Both the student responses and the missing data mechanism depend on latent teacher effects as well as latent student effects, and the correlation between the sets of random effects adjusts teachers’ value-added scores for informative missing data. The methods are illustrated with data from calculus classes at a large public university and with data from an elementary school district.

Suggested Citation

  • Andrew T. Karl & Yan Yang & Sharon L. Lohr, 2013. "A Correlated Random Effects Model for Nonignorable Missing Data in Value-Added Assessment of Teacher Effects," Journal of Educational and Behavioral Statistics, , vol. 38(6), pages 577-603, December.
  • Handle: RePEc:sae:jedbes:v:38:y:2013:i:6:p:577-603
    DOI: 10.3102/1076998613494819
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998613494819
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998613494819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Geert Molenberghs & Caroline Beunckens & Cristina Sotto & Michael G. Kenward, 2008. "Every missingness not at random model has a missingness at random counterpart with equal fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 371-388, April.
    2. Daniel Aaronson & Lisa Barrow & William Sander, 2007. "Teachers and Student Achievement in the Chicago Public High Schools," Journal of Labor Economics, University of Chicago Press, vol. 25(1), pages 95-135.
    3. Louis T. Mariano & Daniel F. McCaffrey & J. R. Lockwood, 2010. "A Model for Teacher Effects From Longitudinal Data Without Assuming Vertical Scaling," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 253-279, June.
    4. Shu Xu & Shelley A. Blozis, 2011. "Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 237-256, April.
    5. Jesse Rothstein, 2010. "Teacher Quality in Educational Production: Tracking, Decay, and Student Achievement," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(1), pages 175-214.
    6. Karl, Andrew T. & Yang, Yan & Lohr, Sharon L., 2013. "Efficient maximum likelihood estimation of multiple membership linear mixed models, with an application to educational value-added assessments," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 13-27.
    7. Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre, 2009. "Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 637-654, June.
    8. Hanushek, Eric, 1971. "Teacher Characteristics and Gains in Student Achievement: Estimation Using Micro Data," American Economic Review, American Economic Association, vol. 61(2), pages 280-288, May.
    9. Ying Yuan & Roderick J. A. Little, 2009. "Mixed-Effect Hybrid Models for Longitudinal Data with Nonignorable Dropout," Biometrics, The International Biometric Society, vol. 65(2), pages 478-486, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karl, Andrew T. & Yang, Yan & Lohr, Sharon L., 2014. "Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 146-162.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karl, Andrew T. & Yang, Yan & Lohr, Sharon L., 2014. "Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 146-162.
    2. Hanushek, Eric A., 2011. "The economic value of higher teacher quality," Economics of Education Review, Elsevier, vol. 30(3), pages 466-479, June.
    3. Huang, Wei & Li, Teng & Pan, Yinghao & Ren, Jinyang, 2023. "Teacher characteristics and student performance: Evidence from random teacher-student assignments in China," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 747-781.
    4. Metzler, Johannes & Woessmann, Ludger, 2012. "The impact of teacher subject knowledge on student achievement: Evidence from within-teacher within-student variation," Journal of Development Economics, Elsevier, vol. 99(2), pages 486-496.
    5. Douglas O. Staiger & Jonah E. Rockoff, 2010. "Searching for Effective Teachers with Imperfect Information," Journal of Economic Perspectives, American Economic Association, vol. 24(3), pages 97-118, Summer.
    6. Eric S. Taylor & John H. Tyler, 2011. "The Effect of Evaluation on Performance: Evidence from Longitudinal Student Achievement Data of Mid-career Teachers," NBER Working Papers 16877, National Bureau of Economic Research, Inc.
    7. Hinrichs, Peter, 2021. "What kind of teachers are schools looking for? Evidence from a randomized field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 186(C), pages 395-411.
    8. Raj Chetty & John N. Friedman & Jonah E. Rockoff, 2014. "Measuring the Impacts of Teachers II: Teacher Value-Added and Student Outcomes in Adulthood," American Economic Review, American Economic Association, vol. 104(9), pages 2633-2679, September.
    9. repec:mpr:mprres:6941 is not listed on IDEAS
    10. Stephen Lipscomb & Bing-ru Teh & Brian Gill & Hanley Chiang & Antoniya Owens, "undated". "Teacher and Principal Value-Added: Research Findings and Implementation Practices," Mathematica Policy Research Reports b024faae6179407da5b887263, Mathematica Policy Research.
    11. Mariesa A. Herrmann & Jonah E. Rockoff, 2012. "Worker Absence and Productivity: Evidence from Teaching," Journal of Labor Economics, University of Chicago Press, vol. 30(4), pages 749-782.
    12. Sander Gerritsen & Erik Plug & Dinand Webbink, 2014. "Teacher quality and student achievement: Evidence from a Dutch sample of twins," CPB Discussion Paper 294, CPB Netherlands Bureau for Economic Policy Analysis.
    13. Araujo P., Maria Daniela & Quis, Johanna Sophie, 2021. "Parents can tell! Evidence on classroom quality differences in German primary schools," BERG Working Paper Series 172, Bamberg University, Bamberg Economic Research Group.
    14. Araujo P., María Daniela & Quis, Johanna Sophie, 2021. "Teacher Effects in Germany: Evidence from Elementary School," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242457, Verein für Socialpolitik / German Economic Association.
    15. Allison Atteberry & Susanna Loeb & James Wyckoff, 2013. "Do First Impressions Matter? Improvement in Early Career Teacher Effectiveness," NBER Working Papers 19096, National Bureau of Economic Research, Inc.
    16. Thomas J. Kane & Douglas O. Staiger, 2008. "Estimating Teacher Impacts on Student Achievement: An Experimental Evaluation," NBER Working Papers 14607, National Bureau of Economic Research, Inc.
    17. Victor Lavy, 2011. "What Makes an Effective Teacher? Quasi-Experimental Evidence," NBER Working Papers 16885, National Bureau of Economic Research, Inc.
    18. Hanushek, Eric A. & Rivkin, Steven G. & Schiman, Jeffrey C., 2016. "Dynamic effects of teacher turnover on the quality of instruction," Economics of Education Review, Elsevier, vol. 55(C), pages 132-148.
    19. Tanaka, Ryuichi & Bessho, Shun-ichiro & Kawamura, Akira & Noguchi, Haruko & Ushijima, Koichi, 2020. "Determinants of Teacher Value-Added in Public Primary Schools: Evidence from Administrative Panel Data," IZA Discussion Papers 13146, Institute of Labor Economics (IZA).
    20. Eric Hanushek & Steven Rivkin, "undated". "Constrained Job Matching: Does Teacher Job Search Harm Disadvantaged Urban Schools?," Discussion Papers 09-011, Stanford Institute for Economic Policy Research.
    21. Sander Gerritsen & Erik Plug & Dinand Webbink, 2014. "Teacher quality and student achievement: Evidence from a Dutch sample of twins," CPB Discussion Paper 294.rdf, CPB Netherlands Bureau for Economic Policy Analysis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:38:y:2013:i:6:p:577-603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.