IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v84y2015icp135-151.html
   My bibliography  Save this article

A new MM algorithm for constrained estimation in the proportional hazards model

Author

Listed:
  • Ding, Jieli
  • Tian, Guo-Liang
  • Yuen, Kam Chuen

Abstract

The constrained estimation in Cox’s model for the right-censored survival data is studied and the asymptotic properties of the constrained estimators are derived by using the Lagrangian method based on Karush–Kuhn–Tucker conditions. A novel minorization–maximization (MM) algorithm is developed for calculating the maximum likelihood estimates of the regression coefficients subject to box or linear inequality restrictions in the proportional hazards model. The first M-step of the proposed MM algorithm is to construct a surrogate function with a diagonal Hessian matrix, which can be reached by utilizing the convexity of the exponential function and the negative logarithm function. The second M-step is to maximize the surrogate function with a diagonal Hessian matrix subject to box constraints, which is equivalent to separately maximizing several one-dimensional concave functions with a lower bound and an upper bound constraint, resulting in an explicit solution via a median function. The ascent property of the proposed MM algorithm under constraints is theoretically justified. Standard error estimation is also presented via a non-parametric bootstrap approach. Simulation studies are performed to compare the estimations with and without constraints. Two real data sets are used to illustrate the proposed methods.

Suggested Citation

  • Ding, Jieli & Tian, Guo-Liang & Yuen, Kam Chuen, 2015. "A new MM algorithm for constrained estimation in the proportional hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 135-151.
  • Handle: RePEc:eee:csdana:v:84:y:2015:i:c:p:135-151
    DOI: 10.1016/j.csda.2014.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314003181
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunter D.R. & Lange K., 2004. "A Tutorial on MM Algorithms," The American Statistician, American Statistical Association, vol. 58, pages 30-37, February.
    2. Dankmar Böhning & Bruce Lindsay, 1988. "Monotonicity of quadratic-approximation algorithms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(4), pages 641-663, December.
    3. Jinde Wang, 2000. "Approximate Representation of Estimators in Constrained Regression Problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 21-33, March.
    4. David Hunter & Kenneth Lange, 2002. "Computing Estimates in the Proportional Odds Model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 155-168, March.
    5. Silvapulle, Mervyn J., 1997. "On order restricted inference in some mixed linear models," Statistics & Probability Letters, Elsevier, vol. 36(1), pages 23-27, November.
    6. Tian, Guo-Liang & Ng, Kai Wang & Tan, Ming, 2008. "EM-type algorithms for computing restricted MLEs in multivariate normal distributions and multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4768-4778, June.
    7. Hans Nyquist, 1991. "Restricted Estimation of Generalized Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(1), pages 133-141, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Lifeng & Ding, Jieli & Liu, Yanyan & Wei, Chengdong, 2018. "Regression analysis for the proportional hazards model with parameter constraints under case-cohort design," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 194-206.
    2. Xifen Huang & Jinfeng Xu & Yunpeng Zhou, 2023. "Exploring Complex Survival Data through Frailty Modeling and Regularization," Mathematics, MDPI, vol. 11(21), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Lifeng & Ding, Jieli & Liu, Yanyan & Wei, Chengdong, 2018. "Regression analysis for the proportional hazards model with parameter constraints under case-cohort design," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 194-206.
    2. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    3. Tian, Guo-Liang & Tang, Man-Lai & Liu, Chunling, 2012. "Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 255-265.
    4. Durante, Daniele & Canale, Antonio & Rigon, Tommaso, 2019. "A nested expectation–maximization algorithm for latent class models with covariates," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 97-103.
    5. de Leeuw, Jan & Lange, Kenneth, 2009. "Sharp quadratic majorization in one dimension," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2471-2484, May.
    6. Klugkist, Irene & Hoijtink, Herbert, 2009. "Obtaining similar null distributions in the normal linear model using computational methods," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 877-888, February.
    7. Roussille, Nina & Scuderi, Benjamin, 2023. "Bidding for Talent: A Test of Conduct in a High-Wage Labor Market," IZA Discussion Papers 16352, Institute of Labor Economics (IZA).
    8. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    9. Wang, Fa, 2022. "Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions," Journal of Econometrics, Elsevier, vol. 229(1), pages 180-200.
    10. Månsson, Kristofer, 2012. "On ridge estimators for the negative binomial regression model," Economic Modelling, Elsevier, vol. 29(2), pages 178-184.
    11. V. Maume-Deschamps & D. Rullière & A. Usseglio-Carleve, 2018. "Spatial Expectile Predictions for Elliptical Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 643-671, June.
    12. Sanjeena Subedi & Drew Neish & Stephen Bak & Zeny Feng, 2020. "Cluster analysis of microbiome data by using mixtures of Dirichlet–multinomial regression models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1163-1187, November.
    13. M. Pardo, 2011. "Testing equality restrictions in generalized linear models for multinomial data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 231-253, March.
    14. Lian, Heng & Meng, Jie & Fan, Zengyan, 2015. "Simultaneous estimation of linear conditional quantiles with penalized splines," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 1-21.
    15. Faisal Zahid & Gerhard Tutz, 2013. "Multinomial logit models with implicit variable selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 393-416, December.
    16. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    17. Gerhard Tutz & Gunther Schauberger, 2015. "A Penalty Approach to Differential Item Functioning in Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 21-43, March.
    18. Vu, Duy & Aitkin, Murray, 2015. "Variational algorithms for biclustering models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 12-24.
    19. Gunter Maris & Han Maas, 2012. "Speed-Accuracy Response Models: Scoring Rules based on Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 615-633, October.
    20. Bohning, Dankmar, 1999. "The lower bound method in probit regression," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 13-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:84:y:2015:i:c:p:135-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.