IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i21p4440-d1268168.html
   My bibliography  Save this article

Exploring Complex Survival Data through Frailty Modeling and Regularization

Author

Listed:
  • Xifen Huang

    (School of Mathematics, Yunnan Normal University, Kunming 650092, China)

  • Jinfeng Xu

    (School of Mathematics, Yunnan Normal University, Kunming 650092, China)

  • Yunpeng Zhou

    (Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong, China)

Abstract

This study addresses the analysis of complex multivariate survival data, where each individual may experience multiple events and a wide range of relevant covariates are available. We propose an advanced modeling approach that extends the classical shared frailty framework to account for within-subject dependence. Our model incorporates a flexible frailty distribution, encompassing well-known distributions, such as gamma, log-normal, and inverse Gaussian. To ensure accurate estimation and effective model selection, we utilize innovative regularization techniques. The proposed methodology exhibits desirable theoretical properties and has been validated through comprehensive simulation studies. Additionally, we apply the approach to real-world data from the Medical Information Mart for Intensive Care (MIMIC-III) dataset, demonstrating its practical utility in analyzing complex survival data structures.

Suggested Citation

  • Xifen Huang & Jinfeng Xu & Yunpeng Zhou, 2023. "Exploring Complex Survival Data through Frailty Modeling and Regularization," Mathematics, MDPI, vol. 11(21), pages 1-14, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4440-:d:1268168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/21/4440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/21/4440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Jieli & Tian, Guo-Liang & Yuen, Kam Chuen, 2015. "A new MM algorithm for constrained estimation in the proportional hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 135-151.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Andreas Groll & Trevor Hastie & Gerhard Tutz, 2017. "Selection of effects in Cox frailty models by regularization methods," Biometrics, The International Biometric Society, vol. 73(3), pages 846-856, September.
    4. Shujie Ma & Jian Huang, 2017. "A Concave Pairwise Fusion Approach to Subgroup Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 410-423, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    2. Cai, Tingting & Li, Jianbo & Zhou, Qin & Yin, Songlou & Zhang, Riquan, 2024. "Subgroup detection based on partially linear additive individualized model with missing data in response," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    3. Huicong Yu & Jiaqi Wu & Weiping Zhang, 2024. "Simultaneous subgroup identification and variable selection for high dimensional data," Computational Statistics, Springer, vol. 39(6), pages 3181-3205, September.
    4. Elena McDonald & Xin Wang, 2024. "Generalized regression estimators with concave penalties and a comparison to lasso type estimators," METRON, Springer;Sapienza Università di Roma, vol. 82(2), pages 213-239, August.
    5. Yan Li & Chun Yu & Yize Zhao & Weixin Yao & Robert H. Aseltine & Kun Chen, 2022. "Pursuing sources of heterogeneity in modeling clustered population," Biometrics, The International Biometric Society, vol. 78(2), pages 716-729, June.
    6. Shao, Lihui & Wu, Jiaqi & Zhang, Weiping & Chen, Yu, 2024. "Integrated subgroup identification from multi-source data," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
    7. Liu, Lili & Lin, Lu, 2019. "Subgroup analysis for heterogeneous additive partially linear models and its application to car sales data," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 239-259.
    8. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. Wang, Xin & Zhu, Zhengyuan & Zhang, Hao Helen, 2023. "Spatial heterogeneity automatic detection and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    10. Wang, Wei & Xiao, Zhijie & Ren, Yanyan & Yan, Xiaodong, 2023. "A bi-integrative analysis of two-dimensional heterogeneous panel data models," Economics Letters, Elsevier, vol. 230(C).
    11. Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
    12. Ye He & Ling Zhou & Yingcun Xia & Huazhen Lin, 2023. "Center‐augmented ℓ2‐type regularization for subgroup learning," Biometrics, The International Biometric Society, vol. 79(3), pages 2157-2170, September.
    13. Weirong Li & Wensheng Zhu, 2024. "Subgroup analysis with concave pairwise fusion penalty for ordinal response," Statistical Papers, Springer, vol. 65(6), pages 3327-3355, August.
    14. Shuichi Kawano, 2021. "Sparse principal component regression via singular value decomposition approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 795-823, September.
    15. Lu Tang & Peter X.‐K. Song, 2021. "Poststratification fusion learning in longitudinal data analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 914-928, September.
    16. Qifan Song & Guang Cheng, 2020. "Bayesian Fusion Estimation via t Shrinkage," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-385, August.
    17. Benjamin G. Stokell & Rajen D. Shah & Ryan J. Tibshirani, 2021. "Modelling high‐dimensional categorical data using nonconvex fusion penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 579-611, July.
    18. Wei Dong & Hongzhen Liu, 2024. "Distributed Sparse Precision Matrix Estimation via Alternating Block-Based Gradient Descent," Mathematics, MDPI, vol. 12(5), pages 1-15, February.
    19. Lin, Fangzheng & Tang, Yanlin & Zhu, Huichen & Zhu, Zhongyi, 2022. "Spatially clustered varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    20. Pei, Youquan & Peng, Heng & Xu, Jinfeng, 2024. "A latent class Cox model for heterogeneous time-to-event data," Journal of Econometrics, Elsevier, vol. 239(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4440-:d:1268168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.