IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v29y2012i2p178-184.html
   My bibliography  Save this article

On ridge estimators for the negative binomial regression model

Author

Listed:
  • Månsson, Kristofer

Abstract

The negative binomial (NB) regression model is very popular in applied research when analyzing count data. The commonly used maximum likelihood (ML) estimator is very sensitive to highly intercorrelated explanatory variables. Therefore, a NB ridge regression estimator (NBRR) is proposed as a robust option of estimating the parameters of the NB model in the presence of multicollinearity. To investigate the performance of the NBRR and the traditional ML approach the mean squared error (MSE) is calculated using Monte Carlo simulations. The simulated result indicated that some of the proposed NBRR methods should always be preferred to the ML method.

Suggested Citation

  • Månsson, Kristofer, 2012. "On ridge estimators for the negative binomial regression model," Economic Modelling, Elsevier, vol. 29(2), pages 178-184.
  • Handle: RePEc:eee:ecmode:v:29:y:2012:i:2:p:178-184
    DOI: 10.1016/j.econmod.2011.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999311002276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2011.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Månsson, Kristofer & Shukur, Ghazi, 2011. "A Poisson ridge regression estimator," Economic Modelling, Elsevier, vol. 28(4), pages 1475-1481, July.
    2. Hans Nyquist, 1991. "Restricted Estimation of Generalized Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(1), pages 133-141, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Amin & Muhammad Qasim & Muhammad Amanullah & Saima Afzal, 2020. "Performance of some ridge estimators for the gamma regression model," Statistical Papers, Springer, vol. 61(3), pages 997-1026, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    2. Devriendt, Sander & Antonio, Katrien & Reynkens, Tom & Verbelen, Roel, 2021. "Sparse regression with Multi-type Regularized Feature modeling," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 248-261.
    3. Jeremias Leão & Francisco Cysneiros & Helton Saulo & N. Balakrishnan, 2016. "Constrained test in linear models with multivariate power exponential distribution," Computational Statistics, Springer, vol. 31(4), pages 1569-1592, December.
    4. Jamshidian, Mortaza, 2004. "On algorithms for restricted maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 137-157, March.
    5. M. Pardo, 2011. "Testing equality restrictions in generalized linear models for multinomial data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 231-253, March.
    6. Faisal Zahid & Gerhard Tutz, 2013. "Multinomial logit models with implicit variable selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 393-416, December.
    7. Månsson, Kristofer & Kibria, B. M. Golam & Sjölander, Pär & Shukur, Ghazi, 2011. "New Liu Estimators for the Poisson Regression Model: Method and Application," HUI Working Papers 51, HUI Research.
    8. Gerhard Tutz & Gunther Schauberger, 2015. "A Penalty Approach to Differential Item Functioning in Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 21-43, March.
    9. Faisal M. Zahid & Shahla Ramzan, 2012. "Ordinal ridge regression with categorical predictors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 161-171, March.
    10. Muhammad Amin & Muhammad Qasim & Muhammad Amanullah & Saima Afzal, 2020. "Performance of some ridge estimators for the gamma regression model," Statistical Papers, Springer, vol. 61(3), pages 997-1026, June.
    11. Paula, Gilberto A., 1999. "One-sided tests in generalized linear dose-response models," Computational Statistics & Data Analysis, Elsevier, vol. 30(4), pages 413-427, June.
    12. Tutz, Gerhard & Leitenstorfer, Florian, 2006. "Response shrinkage estimators in binary regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2878-2901, June.
    13. Fikriye Kurtoğlu & M. Revan Özkale, 2016. "Liu estimation in generalized linear models: application on gamma distributed response variable," Statistical Papers, Springer, vol. 57(4), pages 911-928, December.
    14. M. Revan Özkale & Hans Nyquist, 2021. "The stochastic restricted ridge estimator in generalized linear models," Statistical Papers, Springer, vol. 62(3), pages 1421-1460, June.
    15. Semra Türkan & Gamze Özel, 2016. "A new modified Jackknifed estimator for the Poisson regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1892-1905, August.
    16. Reinaldo Arellano-Valle & Silvia Ferrari & Francisco Cribari-Neto, 1999. "Bartlett and Bartlett-type corrections for testing linear restrictions," Applied Economics Letters, Taylor & Francis Journals, vol. 6(9), pages 547-549.
    17. Faisal Zahid & Gerhard Tutz, 2013. "Ridge estimation for multinomial logit models with symmetric side constraints," Computational Statistics, Springer, vol. 28(3), pages 1017-1034, June.
    18. Ding, Jieli & Tian, Guo-Liang & Yuen, Kam Chuen, 2015. "A new MM algorithm for constrained estimation in the proportional hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 135-151.
    19. Cysneiros, Francisco Jose A. & Paula, Gilberto A., 2005. "Restricted methods in symmetrical linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 689-708, June.
    20. Faisal Maqbool Zahid & Gerhard Tutz, 2013. "Proportional Odds Models with High‐Dimensional Data Structure," International Statistical Review, International Statistical Institute, vol. 81(3), pages 388-406, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:29:y:2012:i:2:p:178-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.