Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jeconom.2020.11.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andr� Lucas, 2014.
"Observation-Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk,"
The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 898-915, December.
- Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andre Lucas, 2011. "Observation Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk," Tinbergen Institute Discussion Papers 11-042/2/DSF16, Tinbergen Institute.
- Schwaab, Bernd & Koopman, Siem Jan & Lucas, André & Creal, Drew, 2013. "Observation driven mixed-measurement dynamic factor models with an application to credit risk," Working Paper Series 1626, European Central Bank.
- Fernández-Val, Iván & Weidner, Martin, 2016.
"Individual and time effects in nonlinear panel models with large N, T,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
- Ivan Fernandez-Val & Martin Weidner, 2013. "Individual and time effects in nonlinear panel models with large N, T," CeMMAP working papers CWP60/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ivan Fernandez-Val & Martin Weidner, 2014. "Individual and time effects in nonlinear panel models with large N, T," CeMMAP working papers CWP32/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ivan Fernandez-Val & Martin Weidner, 2013. "Individual and Time Effects in Nonlinear Panel Models with Large N, T," Papers 1311.7065, arXiv.org, revised Dec 2018.
- Ivan Fernandez-Val & Martin Weidner, 2015. "Individual and time effects in nonlinear panel models with large N, T," CeMMAP working papers CWP17/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Dankmar Böhning & Bruce Lindsay, 1988. "Monotonicity of quadratic-approximation algorithms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(4), pages 641-663, December.
- Stephen A. Ross, 2013.
"The Arbitrage Theory of Capital Asset Pricing,"
World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30,
World Scientific Publishing Co. Pte. Ltd..
- Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
- Stephen A. Ross, "undated". "The Arbitrage Theory of Capital Asset Pricing," Rodney L. White Center for Financial Research Working Papers 02-73, Wharton School Rodney L. White Center for Financial Research.
- Stephen A. Ross, "undated". "The Arbitrage Theory of Capital Asset Pricing," Rodney L. White Center for Financial Research Working Papers 2-73, Wharton School Rodney L. White Center for Financial Research.
- Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008.
"The multi-state latent factor intensity model for credit rating transitions,"
Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
- Siem Jan Koopman & André Lucas & André Monteiro, 2005. "The Multi-State Latent Factor Intensity Model for Credit Rating Transitions," Tinbergen Institute Discussion Papers 05-071/4, Tinbergen Institute, revised 04 Jul 2005.
- Koopman, Siem Jan & Lucas, André, 2008.
"A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
- Siem Jan Koopman & André Lucas & Robert Daniels, 2005. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Tinbergen Institute Discussion Papers 05-060/4, Tinbergen Institute.
- Schönbucher, Philipp J., 2000. "Factor Models for Portofolio Credit Risk," Bonn Econ Discussion Papers 16/2001, University of Bonn, Bonn Graduate School of Economics (BGSE).
- Deon Filmer & Lant Pritchett, 2001. "Estimating Wealth Effects Without Expenditure Data—Or Tears: An Application To Educational Enrollments In States Of India," Demography, Springer;Population Association of America (PAA), vol. 38(1), pages 115-132, February.
- Fan, Jianqing & Gong, Wenyan & Zhu, Ziwei, 2019. "Generalized high-dimensional trace regression via nuclear norm regularization," Journal of Econometrics, Elsevier, vol. 212(1), pages 177-202.
- Serena Ng, 2015. "Constructing Common Factors from Continuous and Categorical Data," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1141-1171, December.
- McNeil, Alexander J. & Wendin, Jonathan P., 2007. "Bayesian inference for generalized linear mixed models of portfolio credit risk," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 131-149, March.
- de Leeuw, Jan, 2006. "Principal component analysis of binary data by iterated singular value decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 21-39, January.
- Jushan Bai & Kunpeng Li, 2016.
"Maximum Likelihood Estimation and Inference for Approximate Factor Models of High Dimension,"
The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 298-309, May.
- Bai, Jushan & Li, Kunpeng, 2012. "Maximum likelihood estimation and inference for approximate factor models of high dimension," MPRA Paper 42099, University Library of Munich, Germany, revised 19 Oct 2012.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005.
"Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach," Finance and Economics Discussion Series 2004-03, Board of Governors of the Federal Reserve System (U.S.).
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
- Chen, Mingli, 2016.
"Estimation of Nonlinear Panel Models with Multiple Unobserved Effects,"
The Warwick Economics Research Paper Series (TWERPS)
1120, University of Warwick, Department of Economics.
- Chen, Mingli, 2016. "Estimation of Nonlinear Panel Models with Multiple Unobserved Effects," Economic Research Papers 269326, University of Warwick - Department of Economics.
- Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
- Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
- Tony Lancaster, 2002. "Orthogonal Parameters and Panel Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(3), pages 647-666.
- Lancaster, Tony, 2000. "The incidental parameter problem since 1948," Journal of Econometrics, Elsevier, vol. 95(2), pages 391-413, April.
- Jinyong Hahn & Whitney Newey, 2004.
"Jackknife and Analytical Bias Reduction for Nonlinear Panel Models,"
Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
- Jinyong Hahn & Whitney K. Newey, 2003. "Jackknife and analytical bias reduction for nonlinear panel models," CeMMAP working papers CWP17/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jinyong Hahn & Whitney K. Newey, 2003. "Jackknife and analytical bias reduction for nonlinear panel models," CeMMAP working papers 17/03, Institute for Fiscal Studies.
- Changyong Feng & Hongyue Wang & Yu Han & Yinglin Xia & Xin M. Tu, 2013. "The Mean Value Theorem and Taylor's Expansion in Statistics," The American Statistician, Taylor & Francis Journals, vol. 67(4), pages 245-248, November.
- Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
- Hahn, Jinyong & Kuersteiner, Guido, 2011. "Bias Reduction For Dynamic Nonlinear Panel Models With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1152-1191, December.
- Koopman, Siem Jan & Lucas, André & Schwaab, Bernd, 2011. "Modeling frailty-correlated defaults using many macroeconomic covariates," Journal of Econometrics, Elsevier, vol. 162(2), pages 312-325, June.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Fan, Jianqing & Xue, Lingzhou & Yao, Jiawei, 2017. "Sufficient forecasting using factor models," Journal of Econometrics, Elsevier, vol. 201(2), pages 292-306.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liang Chen & Minyuan Zhang, 2023. "Common Correlated Effects Estimation of Nonlinear Panel Data Models," Papers 2304.13199, arXiv.org.
- Esther Ruiz & Pilar Poncela, 2022. "Factor Extraction in Dynamic Factor Models: Kalman Filter Versus Principal Components," Foundations and Trends(R) in Econometrics, now publishers, vol. 12(2), pages 121-231, November.
- Zhe Sun & Yundong Tu, 2024. "Factors in Fashion: Factor Analysis towards the Mode," Papers 2409.19287, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Fa, 2017. "Maximum likelihood estimation and inference for high dimensional nonlinear factor models with application to factor-augmented regressions," MPRA Paper 93484, University Library of Munich, Germany, revised 19 May 2019.
- Moon, Hyungsik Roger & Weidner, Martin, 2017.
"Dynamic Linear Panel Regression Models With Interactive Fixed Effects,"
Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
- Hyungsik Roger Moon & Martin Weidner, 2013. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers CWP63/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hyungsik Roger Moon & Martin Weidner, 2014. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers CWP47/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 63/13, Institute for Fiscal Studies.
- Andersen, Torben G. & Fusari, Nicola & Todorov, Viktor & Varneskov, Rasmus T., 2019.
"Unified inference for nonlinear factor models from panels with fixed and large time span,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 4-25.
- Torben G. Andersen & Nicola Fusari & Viktor Todorov & Rasmus T. Varneskov, 2018. "Unified Inference for Nonlinear Factor Models from Panels with Fixed and Large Time Span," CREATES Research Papers 2018-03, Department of Economics and Business Economics, Aarhus University.
- Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021.
"Nonlinear factor models for network and panel data,"
Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
- Mingli Chen & Iv'an Fern'andez-Val & Martin Weidner, 2014. "Nonlinear Factor Models for Network and Panel Data," Papers 1412.5647, arXiv.org, revised Oct 2019.
- Mingli Chen & Ivan Fernandez-Val & Martin Weidner, 2019. "Nonlinear factor models for network and panel data," CeMMAP working papers CWP18/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Mingli Chen & Ivan Fernandez-Val & Martin Weidner, 2018. "Nonlinear factor models for network and panel data," CeMMAP working papers CWP38/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 47/14, Institute for Fiscal Studies.
- Bernd Schwaab & Siem Jan Koopman & André Lucas, 2017.
"Global Credit Risk: World, Country and Industry Factors,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 296-317, March.
- Bernd Schwaab & Siem Jan Koopman & André Lucas, 2015. "Global Credit Risk: World, Country and Industry Factors," Tinbergen Institute Discussion Papers 15-029/III/DSF87, Tinbergen Institute.
- Schwaab, Bernd & Koopman, Siem Jan & Lucas, André, 2016. "Global credit risk: world country and industry factors," Working Paper Series 1922, European Central Bank.
- Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
- Schwaab, Bernd & Koopman, Siem Jan & Lucas, André, 2014. "Nowcasting and forecasting global financial sector stress and credit market dislocation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 741-758.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Barigozzi, Matteo & Hallin, Marc & Luciani, Matteo & Zaffaroni, Paolo, 2024.
"Inferential theory for generalized dynamic factor models,"
Journal of Econometrics, Elsevier, vol. 239(2).
- Matteo Barigozzi & Marc Hallin & Matteo Luciani & Paolo Zaffaroni, 2021. "Inferential Theory for Generalized Dynamic Factor Models," Working Papers ECARES 2021-20, ULB -- Universite Libre de Bruxelles.
- Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016.
"Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets,"
Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
- Patrick GAGLIARDINI & Elisa OSSOLA & Olivier SCAILLET, 2011. "Time-Varying Risk Premium In Large Cross-Sectional Equidity Datasets," Swiss Finance Institute Research Paper Series 11-40, Swiss Finance Institute.
- Patrick GAGLIARDINI & Elisa OSSOLA & Olivier SCAILLET, 2011. "Time-Varying Risk Premium In Large Cross-Sectional Equidity Datasets," Swiss Finance Institute Research Paper Series 11-41, Swiss Finance Institute.
- Ossola, Elisa & Gagilardini, Patrick & Scaillet, Olivier, 2015. "Time-varying risk premium in large cross-sectional equity datasets," Working Papers unige:76321, University of Geneva, Geneva School of Economics and Management.
- Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019.
"Estimation of large dimensional conditional factor models in finance,"
Working Papers
unige:125031, University of Geneva, Geneva School of Economics and Management.
- Patrick Gagliardini & Elisa Ossola & O. Scaillet, 2019. "Estimation of Large Dimensional Conditional Factor Models in Finance," Swiss Finance Institute Research Paper Series 19-46, Swiss Finance Institute.
- Mikkelsen, Jakob Guldbæk & Hillebrand, Eric & Urga, Giovanni, 2019. "Consistent estimation of time-varying loadings in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 208(2), pages 535-562.
- Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021.
"Quantile Factor Models,"
Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
- Chen, Liang, 2017. "Quantile Factor Models," UC3M Working papers. Economics 25299, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Liang Chen & Juan Jose Dolado & Jesus Gonzalo, 2019. "Quantile Factor Models," Papers 1911.02173, arXiv.org, revised Sep 2020.
- Dolado, Juan J & Chen, Liang & Gonzalo, Jesus, 2018. "Quantile Factor Models," CEPR Discussion Papers 12716, C.E.P.R. Discussion Papers.
- Chen, Liang & Dolado, Juan J. & Gonzalo, Jesús, 2020. "Quantile Factor Models," IZA Discussion Papers 13870, Institute of Labor Economics (IZA).
- Kutateladze, Varlam, 2022. "The kernel trick for nonlinear factor modeling," International Journal of Forecasting, Elsevier, vol. 38(1), pages 165-177.
- repec:gnv:wpaper:unige:76321 is not listed on IDEAS
- Varlam Kutateladze, 2021. "The Kernel Trick for Nonlinear Factor Modeling," Papers 2103.01266, arXiv.org.
- Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.
- Martin Solberger & Erik Spånberg, 2020. "Estimating a Dynamic Factor Model in EViews Using the Kalman Filter and Smoother," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 875-900, March.
- Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2021.
"Integrated likelihood based inference for nonlinear panel data models with unobserved effects,"
Journal of Econometrics, Elsevier, vol. 223(1), pages 73-95.
- Martin Schumann & Thomas A. Severini & Gautam Tripathi, 2017. "Integrated Likelihood Based Inference for Nonlinear Panel Data Models with Unobserved Effects," DEM Discussion Paper Series 17-01, Department of Economics at the University of Luxembourg.
More about this item
Keywords
Factor model; Mixed measurement; Maximum likelihood; High dimension; Factor-augmented regression; Forecasting;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:229:y:2022:i:1:p:180-200. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.