IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v27y2000i1p21-33.html
   My bibliography  Save this article

Approximate Representation of Estimators in Constrained Regression Problems

Author

Listed:
  • Jinde Wang

Abstract

The estimators of inequality‐constrained regression problems can be computed by iterative algorithms of mathematical programming, but they do not have analytical expressions in terms of the given data. This situation brings obstacles to further studies on the constrained regression. In this paper we derive approximate representations of the estimators with a remainder of magnitude (N−1 log log N)1/2. From these representations one can clearly see the concrete structure of the estimators of these problems. It will be very helpful for further regression analysis.

Suggested Citation

  • Jinde Wang, 2000. "Approximate Representation of Estimators in Constrained Regression Problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 21-33, March.
  • Handle: RePEc:bla:scjsta:v:27:y:2000:i:1:p:21-33
    DOI: 10.1111/1467-9469.00175
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00175
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Lifeng & Ding, Jieli & Liu, Yanyan & Wei, Chengdong, 2018. "Regression analysis for the proportional hazards model with parameter constraints under case-cohort design," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 194-206.
    2. Li, Yifan & Nolte, Ingmar & Pham, Manh Cuong, 2024. "Parametric risk-neutral density estimation via finite lognormal-Weibull mixtures," Journal of Econometrics, Elsevier, vol. 241(2).
    3. Ding, Jieli & Tian, Guo-Liang & Yuen, Kam Chuen, 2015. "A new MM algorithm for constrained estimation in the proportional hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 135-151.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:27:y:2000:i:1:p:21-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.