IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v78y2008i1p57-75.html
   My bibliography  Save this article

Analytical study of a stochastic plant growth model: Application to the GreenLab model

Author

Listed:
  • Kang, M.Z.
  • Cournède, P.H.
  • de Reffye, P.
  • Auclair, D.
  • Hu, B.G.

Abstract

A stochastic functional–structural model simulating plant development and growth is presented. The number of organs (internodes, leaves and fruits) produced by the model is not only a key intermediate variable for biomass production computation, but also an indicator of model complexity. To obtain their mean and variance through simulation is time-consuming and the results are approximate. In this paper, based on the idea of substructure decomposition, the theoretical mean and variance of the number of organs in a plant structure from the model are computed recurrently by applying a compound law of generating functions. This analytical method provides fast and precise results, which facilitates model analysis as well as model calibration and validation with real plants. Furthermore, the mean and variance of the biomass production from the stochastic plant model are of special interest linked to the prediction of yield. In this paper, through differential statistics, their approximate results are computed in an analytical way for any plant age. A case study on sample trees from this functional–structural model shows the theoretical moments of the number of organs and the biomass production, as well as the computation efficiency of the analytical method compared to a Monte-Carlo simulation method. The advantages and the drawbacks of this stochastic model for agricultural applications are discussed.

Suggested Citation

  • Kang, M.Z. & Cournède, P.H. & de Reffye, P. & Auclair, D. & Hu, B.G., 2008. "Analytical study of a stochastic plant growth model: Application to the GreenLab model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(1), pages 57-75.
  • Handle: RePEc:eee:matcom:v:78:y:2008:i:1:p:57-75
    DOI: 10.1016/j.matcom.2007.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475407002029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2007.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dayan, E. & Presnov, E. & Fuchs, M., 2004. "Prediction and calculation of morphological characteristics and distribution of assimilates in the ROSGRO model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 65(1), pages 101-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parsons, Russell A. & Mell, William E. & McCauley, Peter, 2011. "Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior," Ecological Modelling, Elsevier, vol. 222(3), pages 679-691.
    2. Wu, Lin & Le Dimet, François-Xavier & de Reffye, Philippe & Hu, Bao-Gang & Cournède, Paul-Henry & Kang, Meng-Zhen, 2012. "An optimal control methodology for plant growth—Case study of a water supply problem of sunflower," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 909-923.
    3. Trevezas, S. & Malefaki, S. & Cournède, P.-H., 2014. "Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 82-99.
    4. D. Logothetis & S. Malefaki & S. Trevezas & P.-H. Cournède, 2022. "Bayesian Estimation for the GreenLab Plant Growth Model with Deterministic Organogenesis," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 63-87, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Lin & Le Dimet, François-Xavier & de Reffye, Philippe & Hu, Bao-Gang & Cournède, Paul-Henry & Kang, Meng-Zhen, 2012. "An optimal control methodology for plant growth—Case study of a water supply problem of sunflower," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 909-923.
    2. Dayan, J & Dayan, E & Strassberg, Y & Presnov, E, 2004. "Simulation and control of ventilation rates in greenhouses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 65(1), pages 3-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:78:y:2008:i:1:p:57-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.