IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i7p1744-1755.html
   My bibliography  Save this article

Fisher scoring: An interpolation family and its Monte Carlo implementations

Author

Listed:
  • Wang, Yong

Abstract

The Fisher scoring method is widely used for likelihood maximization, but its application can be difficult in situations where the expected information matrix is not available in closed form or when parameters have constraints. In this paper, we describe an interpolation family that generalizes the Fisher scoring method and propose a general Monte Carlo approach that makes these generalized methods also applicable in such situations. With this approach, random samples are generated from the iteratively estimated models and used to provide estimates of the expected information. As a result, the likelihood function can be optimized by repeatedly solving weighted linear regression problems. Specific extensions of this general approach to fitting multivariate normal mixtures and to fitting mixed-effects models with a single discrete random effect are also described. Numerical studies show that the proposed algorithms are fast and reliable to use, as compared with the classical expectation-maximization algorithm.

Suggested Citation

  • Wang, Yong, 2010. "Fisher scoring: An interpolation family and its Monte Carlo implementations," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1744-1755, July.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:7:p:1744-1755
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00057-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    2. Gauderman, W. James & Navidi, William, 2001. "A Monte Carlo Newton-Raphson procedure for maximizing complex likelihoods on pedigree data," Computational Statistics & Data Analysis, Elsevier, vol. 35(4), pages 395-415, February.
    3. Murray Aitkin, 1999. "A General Maximum Likelihood Analysis of Variance Components in Generalized Linear Models," Biometrics, The International Biometric Society, vol. 55(1), pages 117-128, March.
    4. Yong Wang, 2007. "On fast computation of the non‐parametric maximum likelihood estimate of a mixing distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 185-198, April.
    5. Wang, Yong, 2007. "Maximum likelihood computation based on the Fisher scoring and Gauss-Newton quadratic approximations," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3776-3787, May.
    6. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    7. Brian S. Caffo & Wolfgang Jank & Galin L. Jones, 2005. "Ascent‐based Monte Carlo expectation– maximization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 235-251, April.
    8. Agresti, Alan & Caffo, Brian & Ohman-Strickland, Pamela, 2004. "Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 639-653, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    2. Tutz, Gerhard, 2004. "Generalized semiparametrically structured mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 777-800, July.
    3. Bartolucci, Francesco & Bacci, Silvia & Pigini, Claudia, 2017. "Misspecification test for random effects in generalized linear finite-mixture models for clustered binary and ordered data," Econometrics and Statistics, Elsevier, vol. 3(C), pages 112-131.
    4. Koutchade, Philippe & Carpentier, Alain & Féménia, Fabienne, 2015. "Empirical modeling of production decisions of heterogeneous farmers with random parameter models," Working Papers 210097, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    5. Caffo, Brian & An, Ming-Wen & Rohde, Charles, 2007. "Flexible random intercept models for binary outcomes using mixtures of normals," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5220-5235, July.
    6. repec:jss:jstsof:08:i09 is not listed on IDEAS
    7. Marco Alfò & Giovanni Trovato, 2004. "Semiparametric Mixture Models for Multivariate Count Data, with Application," CEIS Research Paper 51, Tor Vergata University, CEIS.
    8. Tanya P. Garcia & Yanyuan Ma, 2016. "Optimal Estimator for Logistic Model with Distribution-free Random Intercept," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 156-171, March.
    9. Trevezas, S. & Malefaki, S. & Cournède, P.-H., 2014. "Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 82-99.
    10. Saskia Litière & Ariel Alonso & Geert Molenberghs, 2007. "Type I and Type II Error Under Random-Effects Misspecification in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 63(4), pages 1038-1044, December.
    11. Koutchadé, Philippe & Carpentier, Alain & Féménia, Fabienne, 2015. "Empirical modelling of production decisions of heterogeneous farmers with mixed models," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205098, Agricultural and Applied Economics Association.
    12. Koutchade, Philippe & Carpentier, Alain & Femenia, Fabienne, 2015. "Accounting for unobserved heterogeneity in micro-econometric agricultural production models: a random parameter approach," 2015 Conference, August 9-14, 2015, Milan, Italy 212015, International Association of Agricultural Economists.
    13. Tutz, Gerhard & Kauermann, Goran, 2003. "Generalized linear random effects models with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 43(1), pages 13-28, May.
    14. Leonardo Grilli & Carla Rampichini, 2015. "Specification of random effects in multilevel models: a review," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 967-976, May.
    15. Sik-Yum Lee & Xin-Yuan Song, 2007. "A Unified Maximum Likelihood Approach for Analyzing Structural Equation Models With Missing Nonstandard Data," Sociological Methods & Research, , vol. 35(3), pages 352-381, February.
    16. Zhang, Daowen & Davidian, Marie, 2004. "Likelihood and conditional likelihood inference for generalized additive mixed models for clustered data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 90-106, October.
    17. Brentnall, Adam R. & Crowder, Martin J. & Hand, David J., 2011. "Approximate repeated-measures shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1150-1159, February.
    18. Seo, Byungtae & Ha, Il Do, 2024. "Semiparametric accelerated failure time models under unspecified random effect distributions," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    19. Xianzheng Huang, 2009. "Diagnosis of Random-Effect Model Misspecification in Generalized Linear Mixed Models for Binary Response," Biometrics, The International Biometric Society, vol. 65(2), pages 361-368, June.
    20. Reza Drikvandi & Geert Verbeke & Geert Molenberghs, 2017. "Diagnosing misspecification of the random-effects distribution in mixed models," Biometrics, The International Biometric Society, vol. 73(1), pages 63-71, March.
    21. Vock, David & Davidian, Marie & Tsiatis, Anastasios, 2014. "SNP_NLMM: A SAS Macro to Implement a Flexible Random Effects Density for Generalized Linear and Nonlinear Mixed Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(c02).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:7:p:1744-1755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.