IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i12p4570-4583.html
   My bibliography  Save this article

A Bayesian analysis of dual autoradiographic images

Author

Listed:
  • Johnson, Timothy D.
  • Piert, Morand

Abstract

We present a Bayesian bivariate image model and apply it to a study that was designed to investigate the relationship between hypoxia and angiogenesis in an animal tumor model. Two radiolabeled tracers (one measuring angiogenesis, the other measuring hypoxia) were simultaneously injected into the animals, the tumors were removed and autoradiographic images of the tracer concentrations were obtained. We model correlation between tracers with a mixture of bivariate normal distributions and the spatial correlation inherent in the images by means of the Potts model. Although the Potts model is typically used for image segmentation, we use it solely as a device to account for spatial correlation. The number of classes in the model is assumed unknown and is estimated via reversible jump MCMC, marginalizing over the number of classes for posterior inference. We present the model and estimation method using set theory notation which will assist us in introducing a novel reallocation scheme used in the reversible jump proposals. We also estimate the spatial regularization parameter in the Potts model prior. Via simulation studies, we show that it is necessary to account for both the spatial correlation and the correlation between the two tracers.

Suggested Citation

  • Johnson, Timothy D. & Piert, Morand, 2009. "A Bayesian analysis of dual autoradiographic images," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4570-4583, October.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4570-4583
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00220-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Green P.J. & Richardson S., 2002. "Hidden Markov Models and Disease Mapping," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1055-1070, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Ick Hoon & Liang, Faming, 2014. "Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 402-416.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spezia, L. & Cooksley, S.L. & Brewer, M.J. & Donnelly, D. & Tree, A., 2014. "Modelling species abundance in a river by Negative Binomial hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 599-614.
    2. Dolores Catelan & Annibale Biggeri & Corrado Lagazio, 2009. "On the clustering term in ecological analysis: how do different prior specifications affect results?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 49-61, March.
    3. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    4. Xifen Huang & Chaosong Xiong & Jinfeng Xu & Jianhua Shi & Jinhong Huang, 2022. "Mixture Modeling of Time-to-Event Data in the Proportional Odds Model," Mathematics, MDPI, vol. 10(18), pages 1-11, September.
    5. Luis Nieto-Barajas & Eduardo Gutiérrez-Peña, 2022. "General dependence structures for some models based on exponential families with quadratic variance functions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 699-716, September.
    6. Jan Povala & Seppo Virtanen & Mark Girolami, 2020. "Burglary in London: insights from statistical heterogeneous spatial point processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1067-1090, November.
    7. Francesco Bartolucci & Alessio Farcomeni, 2022. "A hidden Markov space–time model for mapping the dynamics of global access to food," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 246-266, January.
    8. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
    9. Sijia Xiang & Weixin Yao, 2020. "Semiparametric mixtures of regressions with single-index for model based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 261-292, June.
    10. Ugarte, M.D. & Goicoa, T. & Militino, A.F., 2009. "Empirical Bayes and Fully Bayes procedures to detect high-risk areas in disease mapping," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2938-2949, June.
    11. Vidal Rodeiro, Carmen L. & Lawson, Andrew B., 2005. "An evaluation of the edge effects in disease map modelling," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 45-62, April.
    12. N. Friel & A. N. Pettitt, 2008. "Marginal likelihood estimation via power posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 589-607, July.
    13. Yonekura, Shouto & Beskos, Alexandros & Singh, Sumeetpal S., 2021. "Asymptotic analysis of model selection criteria for general hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 164-191.
    14. Ian L. Dryden & Mark R. Scarr & Charles C. Taylor, 2003. "Bayesian texture segmentation of weed and crop images using reversible jump Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 31-50, January.
    15. Zhang, Tonglin & Lin, Ge, 2016. "On Moran’s I coefficient under heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 83-94.
    16. Wanchuang Zhu & Yanan Fan, 2023. "A synthetic likelihood approach for intractable markov random fields," Computational Statistics, Springer, vol. 38(2), pages 749-777, June.
    17. Zhang, Tonglin & Lin, Ge, 2013. "On the limiting distribution of the spatial scan statistic," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 215-225.
    18. R. Reeves, 2004. "Efficient recursions for general factorisable models," Biometrika, Biometrika Trust, vol. 91(3), pages 751-757, September.
    19. Zhang, Tonglin & Lin, Ge, 2014. "Family of power divergence spatial scan statistics," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 162-178.
    20. Jarno Vanhatalo & Scott D. Foster & Geoffrey R. Hosack, 2021. "Spatiotemporal clustering using Gaussian processes embedded in a mixture model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4570-4583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.