IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v67y2013icp41-67.html
   My bibliography  Save this article

Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family

Author

Listed:
  • Balakrishnan, N.
  • Pal, Suvra

Abstract

Recently, a new cure rate survival model has been proposed by considering the Conway–Maxwell Poisson distribution as the distribution of the competing cause variable. This model includes some of the well-known cure rate models discussed in the literature as special cases. Cancer clinical trials often lead to right censored data and so the EM algorithm can be used as an efficient tool for the estimation of the model parameters based on right censored data. By considering this Conway–Maxwell Poisson-based cure rate model and by assuming the lognormal distribution for the time-to-event variable, the steps of the EM algorithm are developed here for the estimation of the parameters of different cure rate survival models. The standard errors of the MLEs are obtained by inverting the observed information matrix. An extensive Monte Carlo simulation study is performed to illustrate the method of inference developed. Model discrimination between different cure rate models is addressed by the likelihood ratio test as well as by Akaike and Bayesian information criteria. Finally, the proposed methodology is illustrated with a real data on cutaneous melanoma.

Suggested Citation

  • Balakrishnan, N. & Pal, Suvra, 2013. "Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 41-67.
  • Handle: RePEc:eee:csdana:v:67:y:2013:i:c:p:41-67
    DOI: 10.1016/j.csda.2013.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313001606
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, N. & Mitra, Debanjan, 2012. "Left truncated and right censored Weibull data and likelihood inference with an illustration," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4011-4025.
    2. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    3. Gupta, Ramesh C. & Li, Xue, 2006. "Statistical inference for the common mean of two log-normal distributions and some applications in reliability," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3141-3164, July.
    4. Liu, Hao & Shen, Yu, 2009. "A Semiparametric Regression Cure Model for Interval-Censored Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1168-1178.
    5. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy, 2012. "Correlated destructive generalized power series cure rate models and associated inference with an application to a cutaneous melanoma data," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1703-1713.
    6. Rodrigues, Josemar & Cancho, Vicente G. & de Castro, Mrio & Louzada-Neto, Francisco, 2009. "On the unification of long-term survival models," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 753-759, March.
    7. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    8. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    9. Stasinopoulos, D. Mikis & Rigby, Robert A., 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i07).
    10. Gerda Claeskens & Rosemary Nguti & Paul Janssen, 2008. "One-sided tests in shared frailty models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 69-82, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sellers, Kimberly F. & Morris, Darcy Steeg & Balakrishnan, Narayanaswamy, 2016. "Bivariate Conway–Maxwell–Poisson distribution: Formulation, properties, and inference," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 152-168.
    2. Suvra Pal & Yingwei Peng & Wisdom Aselisewine, 2024. "A new approach to modeling the cure rate in the presence of interval censored data," Computational Statistics, Springer, vol. 39(5), pages 2743-2769, July.
    3. Diego I. Gallardo & Yolanda M. Gómez & Héctor J. Gómez & María José Gallardo-Nelson & Marcelo Bourguignon, 2023. "The Slash Half-Normal Distribution Applied to a Cure Rate Model with Application to Bone Marrow Transplantation," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    4. Pal, Suvra & Balakrishnan, N., 2016. "Destructive negative binomial cure rate model and EM-based likelihood inference under Weibull lifetime," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 9-20.
    5. Kimberly F. Sellers & Tong Li & Yixuan Wu & Narayanaswamy Balakrishnan, 2021. "A Flexible Multivariate Distribution for Correlated Count Data," Stats, MDPI, vol. 4(2), pages 1-19, April.
    6. Emura, Takeshi & Shiu, Shau-Kai, 2014. "Estimation and model selection for left-truncated and right-censored lifetime data with application to electric power transformers analysis," MPRA Paper 57528, University Library of Munich, Germany.
    7. Cleanderson R. Fidelis & Edwin M. M. Ortega & Gauss M. Cordeiro, 2024. "Residual Analysis for Poisson-Exponentiated Weibull Regression Models with Cure Fraction," Stats, MDPI, vol. 7(2), pages 1-16, May.
    8. Suvra Pal & Jacob Majakwara & N. Balakrishnan, 2018. "An EM algorithm for the destructive COM-Poisson regression cure rate model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 143-171, February.
    9. Suvra Pal & Souvik Roy, 2021. "On the estimation of destructive cure rate model: A new study with exponentially weighted Poisson competing risks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 324-342, August.
    10. N. Balakrishnan & Suvra Pal, 2015. "An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods," Computational Statistics, Springer, vol. 30(1), pages 151-189, March.
    11. Man-Ho Ling & Narayanaswamy Balakrishnan & Chenxi Yu & Hon Yiu So, 2021. "Inference for One-Shot Devices with Dependent k -Out-of- M Structured Components under Gamma Frailty," Mathematics, MDPI, vol. 9(23), pages 1-24, November.
    12. Rocha, Ricardo & Nadarajah, Saralees & Tomazella, Vera & Louzada, Francisco, 2017. "A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 48-63.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Balakrishnan & Suvra Pal, 2015. "An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods," Computational Statistics, Springer, vol. 30(1), pages 151-189, March.
    2. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    3. Suvra Pal & Jacob Majakwara & N. Balakrishnan, 2018. "An EM algorithm for the destructive COM-Poisson regression cure rate model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 143-171, February.
    4. N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
    5. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    6. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    7. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    8. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    9. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn, 2013. "A zero-adjusted gamma model for mortgage loan loss given default," International Journal of Forecasting, Elsevier, vol. 29(4), pages 548-562.
    10. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    11. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    12. Kuntz, Laura-Chloé, 2020. "Beta dispersion and market timing," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 235-256.
    13. I. Gijbels & I. Prosdocimi & G. Claeskens, 2010. "Nonparametric estimation of mean and dispersion functions in extended generalized linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 580-608, November.
    14. Bremhorst, Vincent & Lambert, Philippe, 2016. "Flexible estimation in cure survival models using Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 270-284.
    15. Elizabeth Hashimoto & Gauss Cordeiro & Edwin Ortega, 2013. "The new Neyman type A beta Weibull model with long-term survivors," Computational Statistics, Springer, vol. 28(3), pages 933-954, June.
    16. Groll, Andreas & Hambuckers, Julien & Kneib, Thomas & Umlauf, Nikolaus, 2019. "LASSO-type penalization in the framework of generalized additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 140(C), pages 59-73.
    17. Westgate, Bradford S. & Woodard, Dawn B. & Matteson, David S. & Henderson, Shane G., 2016. "Large-network travel time distribution estimation for ambulances," European Journal of Operational Research, Elsevier, vol. 252(1), pages 322-333.
    18. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    19. Komlos, John & Brabec, Marek, 2011. "The trend of BMI values of US adults by deciles, birth cohorts 1882-1986 stratified by gender and ethnicity," Economics & Human Biology, Elsevier, vol. 9(3), pages 234-250, July.
    20. Rocha, Ricardo & Nadarajah, Saralees & Tomazella, Vera & Louzada, Francisco, 2017. "A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 48-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:67:y:2013:i:c:p:41-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.