IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v81y2018i2d10.1007_s00184-017-0638-8.html
   My bibliography  Save this article

An EM algorithm for the destructive COM-Poisson regression cure rate model

Author

Listed:
  • Suvra Pal

    (University of Texas at Arlington
    University of the Witwatersrand)

  • Jacob Majakwara

    (University of the Witwatersrand)

  • N. Balakrishnan

    (McMaster University)

Abstract

In this paper, we consider a competitive scenario and assume the initial number of competing causes to undergo a destruction after an initial treatment. This brings in a more realistic and practical interpretation of the biological mechanism of the occurrence of tumor since what is recorded is only from the undamaged portion of the original number of competing causes. Instead of assuming any particular distribution for the competing cause, we assume the competing cause to follow a Conway–Maxwell Poisson distribution which brings in flexibility as it can handle both over-dispersion and under-dispersion that we usually encounter in count data. Under this setup and assuming a Weibull distribution to model the time-to-event, we develop the expectation maximization algorithm for such a flexible destructive cure rate model. An extensive simulation study is carried out to demonstrate the performance of the proposed estimation method. Finally, a melanoma data is analyzed for illustrative purpose.

Suggested Citation

  • Suvra Pal & Jacob Majakwara & N. Balakrishnan, 2018. "An EM algorithm for the destructive COM-Poisson regression cure rate model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 143-171, February.
  • Handle: RePEc:spr:metrik:v:81:y:2018:i:2:d:10.1007_s00184-017-0638-8
    DOI: 10.1007/s00184-017-0638-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-017-0638-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-017-0638-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Yingwei & Zhang, Jiajia, 2008. "Identifiability of a mixture cure frailty model," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2604-2608, November.
    2. Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
    3. Wenbin Lu, 2004. "On semiparametric transformation cure models," Biometrika, Biometrika Trust, vol. 91(2), pages 331-343, June.
    4. N. Balakrishnan & Suvra Pal, 2015. "An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods," Computational Statistics, Springer, vol. 30(1), pages 151-189, March.
    5. Vicente Cancho & Mário Castro & Josemar Rodrigues, 2012. "A Bayesian analysis of the Conway–Maxwell–Poisson cure rate model," Statistical Papers, Springer, vol. 53(1), pages 165-176, February.
    6. Balakrishnan, N. & Pal, Suvra, 2013. "Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 41-67.
    7. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy, 2012. "Correlated destructive generalized power series cure rate models and associated inference with an application to a cutaneous melanoma data," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1703-1713.
    8. Li, Chin-Shang & Taylor, Jeremy M. G. & Sy, Judy P., 2001. "Identifiability of cure models," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 389-395, October.
    9. Pal, Suvra & Balakrishnan, N., 2016. "Destructive negative binomial cure rate model and EM-based likelihood inference under Weibull lifetime," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 9-20.
    10. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suvra Pal & Yingwei Peng & Wisdom Aselisewine, 2024. "A new approach to modeling the cure rate in the presence of interval censored data," Computational Statistics, Springer, vol. 39(5), pages 2743-2769, July.
    2. Suvra Pal & Souvik Roy, 2021. "On the estimation of destructive cure rate model: A new study with exponentially weighted Poisson competing risks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 324-342, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pal, Suvra & Balakrishnan, N., 2016. "Destructive negative binomial cure rate model and EM-based likelihood inference under Weibull lifetime," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 9-20.
    2. Balakrishnan, N. & Pal, Suvra, 2013. "Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 41-67.
    3. N. Balakrishnan & Suvra Pal, 2015. "An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods," Computational Statistics, Springer, vol. 30(1), pages 151-189, March.
    4. Hanin, Leonid & Huang, Li-Shan, 2014. "Identifiability of cure models revisited," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 261-274.
    5. Suvra Pal & Yingwei Peng & Wisdom Aselisewine, 2024. "A new approach to modeling the cure rate in the presence of interval censored data," Computational Statistics, Springer, vol. 39(5), pages 2743-2769, July.
    6. Suvra Pal & Souvik Roy, 2021. "On the estimation of destructive cure rate model: A new study with exponentially weighted Poisson competing risks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 324-342, August.
    7. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    8. Suvra Pal & N. Balakrishnan, 2017. "Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data," Computational Statistics, Springer, vol. 32(2), pages 429-449, June.
    9. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    10. Yolanda M. Gómez & Diego I. Gallardo & Marcelo Bourguignon & Eduardo Bertolli & Vinicius F. Calsavara, 2023. "A general class of promotion time cure rate models with a new biological interpretation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 66-86, January.
    11. Hu, Tao & Xiang, Liming, 2016. "Partially linear transformation cure models for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 257-269.
    12. Li, Shuwei & Hu, Tao & Zhao, Xingqiu & Sun, Jianguo, 2019. "A class of semiparametric transformation cure models for interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 153-165.
    13. Rocha, Ricardo & Nadarajah, Saralees & Tomazella, Vera & Louzada, Francisco, 2017. "A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 48-63.
    14. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy & Bazán, Jorge, 2014. "A COM–Poisson type generalization of the binomial distribution and its properties and applications," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 158-166.
    15. Jue Hou & Christina D. Chambers & Ronghui Xu, 2018. "A nonparametric maximum likelihood approach for survival data with observed cured subjects, left truncation and right-censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 612-651, October.
    16. Sellers, Kimberly F. & Morris, Darcy Steeg & Balakrishnan, Narayanaswamy, 2016. "Bivariate Conway–Maxwell–Poisson distribution: Formulation, properties, and inference," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 152-168.
    17. Kimberly F. Sellers & Tong Li & Yixuan Wu & Narayanaswamy Balakrishnan, 2021. "A Flexible Multivariate Distribution for Correlated Count Data," Stats, MDPI, vol. 4(2), pages 1-19, April.
    18. Shuangge Ma, 2011. "Additive risk model for current status data with a cured subgroup," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 117-134, February.
    19. Lu Wang & Pang Du & Hua Liang, 2012. "Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components," Biometrics, The International Biometric Society, vol. 68(3), pages 726-735, September.
    20. John Haslett & Andrew C. Parnell & John Hinde & Rafael de Andrade Moral, 2022. "Modelling Excess Zeros in Count Data: A New Perspective on Modelling Approaches," International Statistical Review, International Statistical Institute, vol. 90(2), pages 216-236, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:81:y:2018:i:2:d:10.1007_s00184-017-0638-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.