IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v11y2018i1p6-d127861.html
   My bibliography  Save this article

Negative Binomial Kumaraswamy-G Cure Rate Regression Model

Author

Listed:
  • Amanda D’Andrea

    (Department of Statistics, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
    Institute of Mathematical Science and Computing, University of São Paulo, São Carlos, SP 13565-905, Brazil)

  • Ricardo Rocha

    (Department of Statistics, Institute of Mathematics and Statistics, Federal University of Bahia, Salvador, BA 40170-115, Brazil)

  • Vera Tomazella

    (Department of Statistics, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil)

  • Francisco Louzada

    (Institute of Mathematical Science and Computing, University of São Paulo, São Carlos, SP 13565-905, Brazil)

Abstract

In survival analysis, the presence of elements not susceptible to the event of interest is very common. These elements lead to what is called a fraction cure, cure rate, or even long-term survivors. In this paper, we propose a unified approach using the negative binomial distribution for modeling cure rates under the Kumaraswamy family of distributions. The estimation is made by maximum likelihood. We checked the maximum likelihood asymptotic properties through some simulation setups. Furthermore, we propose an estimation strategy based on the Negative Binomial Kumaraswamy-G generalized linear model. Finally, we illustrate the distributions proposed using a real data set related to health risk.

Suggested Citation

  • Amanda D’Andrea & Ricardo Rocha & Vera Tomazella & Francisco Louzada, 2018. "Negative Binomial Kumaraswamy-G Cure Rate Regression Model," JRFM, MDPI, vol. 11(1), pages 1-14, January.
  • Handle: RePEc:gam:jjrfmx:v:11:y:2018:i:1:p:6-:d:127861
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/11/1/6/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/11/1/6/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. Balakrishnan & Suvra Pal, 2015. "An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods," Computational Statistics, Springer, vol. 30(1), pages 151-189, March.
    2. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    3. Joseph G. Ibrahim & Ming-Hui Chen & Debajyoti Sinha, 2001. "Bayesian Semiparametric Models for Survival Data with a Cure Fraction," Biometrics, The International Biometric Society, vol. 57(2), pages 383-388, June.
    4. Vicente Cancho & Josemar Rodrigues & Mario de Castro, 2011. "A flexible model for survival data with a cure rate: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 57-70.
    5. Rodrigues, Josemar & Cancho, Vicente G. & de Castro, Mrio & Louzada-Neto, Francisco, 2009. "On the unification of long-term survival models," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 753-759, March.
    6. Cooner, Freda & Banerjee, Sudipto & Carlin, Bradley P. & Sinha, Debajyoti, 2007. "Flexible Cure Rate Modeling Under Latent Activation Schemes," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 560-572, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephen Chan & Saralees Nadarajah, 2020. "Extreme Values and Financial Risk," JRFM, MDPI, vol. 13(2), pages 1-3, February.
    2. Reza Azimi & Mahdy Esmailian & Diego I. Gallardo & Héctor J. Gómez, 2022. "A New Cure Rate Model Based on Flory–Schulz Distribution: Application to the Cancer Data," Mathematics, MDPI, vol. 10(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha, Ricardo & Nadarajah, Saralees & Tomazella, Vera & Louzada, Francisco, 2017. "A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 48-63.
    2. Francisco Louzada & M�rio de Castro & Vera Tomazella & Jhon F.B. Gonzales, 2014. "Modeling categorical covariates for lifetime data in the presence of cure fraction by Bayesian partition structures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 622-634, March.
    3. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Suvra Pal & N. Balakrishnan, 2017. "Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data," Computational Statistics, Springer, vol. 32(2), pages 429-449, June.
    5. Bremhorst, Vincent & Lambert, Philippe, 2016. "Flexible estimation in cure survival models using Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 270-284.
    6. Pal, Suvra & Balakrishnan, N., 2016. "Destructive negative binomial cure rate model and EM-based likelihood inference under Weibull lifetime," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 9-20.
    7. N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
    8. Suvra Pal & Souvik Roy, 2021. "On the estimation of destructive cure rate model: A new study with exponentially weighted Poisson competing risks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 324-342, August.
    9. Carvalho Lopes, Celia Mendes & Bolfarine, Heleno, 2012. "Random effects in promotion time cure rate models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 75-87, January.
    10. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy, 2012. "Correlated destructive generalized power series cure rate models and associated inference with an application to a cutaneous melanoma data," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1703-1713.
    11. Elizabeth Hashimoto & Gauss Cordeiro & Edwin Ortega, 2013. "The new Neyman type A beta Weibull model with long-term survivors," Computational Statistics, Springer, vol. 28(3), pages 933-954, June.
    12. Guosheng Yin, 2005. "Bayesian Cure Rate Frailty Models with Application to a Root Canal Therapy Study," Biometrics, The International Biometric Society, vol. 61(2), pages 552-558, June.
    13. Diego I. Gallardo & Heleno Bolfarine & Atonio Carlos Pedroso-de-Lima, 2017. "A clustering cure rate model with application to a sealant study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 2949-2962, December.
    14. Guosheng Yin & Joseph G. Ibrahim, 2005. "A General Class of Bayesian Survival Models with Zero and Nonzero Cure Fractions," Biometrics, The International Biometric Society, vol. 61(2), pages 403-412, June.
    15. Bao Yiqi & Cibele Maria Russo & Vicente G. Cancho & Francisco Louzada, 2016. "Influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(6), pages 1027-1060, May.
    16. Bo Liu & Tien Foo Sing, 2018. "“Cure” Effects and Mortgage Default: A Split Population Survival Time Model," The Journal of Real Estate Finance and Economics, Springer, vol. 56(2), pages 217-251, February.
    17. Lu Wang & Pang Du & Hua Liang, 2012. "Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components," Biometrics, The International Biometric Society, vol. 68(3), pages 726-735, September.
    18. Mário Castro & Yolanda M. Gómez, 2020. "A Bayesian Cure Rate Model Based on the Power Piecewise Exponential Distribution," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 677-692, June.
    19. Mitra Rahimzadeh & Ebrahim Hajizadeh & Farzad Eskandari, 2011. "Non-mixture cure correlated frailty models in Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1651-1663, August.
    20. Bader Aljawadi & Mohd Rizam A. Bakar & Noor Akma Ibrahim & Habshah Midi, 2011. "Parametric Estimation of the Cure Fraction Based on BCH Model Using Left-Censored Data with Covariates," Modern Applied Science, Canadian Center of Science and Education, vol. 5(3), pages 103-103, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:11:y:2018:i:1:p:6-:d:127861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.