IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v12y2025i3p27.html
   My bibliography  Save this article

A New Bivariate Distribution With Applications on Dependent Competing Risks Data

Author

Listed:
  • Thamer Manshi
  • Ammar M. Sarhan
  • Bruce Smith

Abstract

A new bivariate distribution is proposed in this paper using the univariate modified Weibull extension distribution. The proposed distribution is referred to as the bivariate Modified Weibull Extension (BMWE) distribution. The BMWE distribution is of Marshall-Olkin type. We discuss some of the statistical properties of the BMWE distribution. Applications of this distribution to dependent competing risks data are discussed. The maximum likelihood estimators (MLE) of the model parameters using both bivariate data and dependent competing risks data are discussed. These MLE's cannot be obtained in closed form. Therefore, numerical optimization methods are applied. A simulation study is carried out to investigate the performance of the estimation technique. Two real data sets; one bivariate data set and another dependent competing risks data set, are analyzed using the proposed distribution for illustrative and comparison purposes.

Suggested Citation

  • Thamer Manshi & Ammar M. Sarhan & Bruce Smith, 2025. "A New Bivariate Distribution With Applications on Dependent Competing Risks Data," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 12(3), pages 1-27, January.
  • Handle: RePEc:ibn:ijspjl:v:12:y:2025:i:3:p:27
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/ijsp/article/download/0/0/48823/52609
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/ijsp/article/view/0/48823
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    2. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    3. Kundu, Debasis & Gupta, Rameshwar D., 2009. "Bivariate generalized exponential distribution," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 581-593, April.
    4. Sarhan, Ammar M. & Balakrishnan, N., 2007. "A new class of bivariate distributions and its mixture," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1508-1527, August.
    5. Sarhan, Ammar M. & Hamilton, David C. & Smith, Bruce & Kundu, Debasis, 2011. "The bivariate generalized linear failure rate distribution and its multivariate extension," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 644-654, January.
    6. Sarhan, Ammar M. & Apaloo, Joseph, 2013. "Exponentiated modified Weibull extension distribution," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 137-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    2. Muhammed, Hiba Z., 2020. "On a bivariate generalized inverted Kumaraswamy distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    3. Manuel Franco & Juana-María Vivo & Debasis Kundu, 2020. "A Generator of Bivariate Distributions: Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(10), pages 1-30, October.
    4. M. S. Eliwa & M. El-Morshedy, 2019. "Bivariate Gumbel-G Family of Distributions: Statistical Properties, Bayesian and Non-Bayesian Estimation with Application," Annals of Data Science, Springer, vol. 6(1), pages 39-60, March.
    5. Diksha Das & Tariq S. Alshammari & Khudhayr A. Rashedi & Bhanita Das & Partha Jyoti Hazarika & Mohamed S. Eliwa, 2024. "Discrete Joint Random Variables in Fréchet-Weibull Distribution: A Comprehensive Mathematical Framework with Simulations, Goodness-of-Fit Analysis, and Informed Decision-Making," Mathematics, MDPI, vol. 12(21), pages 1-28, October.
    6. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    7. Li, Yang & Sun, Jianguo & Song, Shuguang, 2012. "Statistical analysis of bivariate failure time data with Marshall–Olkin Weibull models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2041-2050.
    8. S. Mirhosseini & M. Amini & D. Kundu & A. Dolati, 2015. "On a new absolutely continuous bivariate generalized exponential distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 61-83, March.
    9. Sarhan, Ammar M. & Hamilton, David C. & Smith, Bruce & Kundu, Debasis, 2011. "The bivariate generalized linear failure rate distribution and its multivariate extension," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 644-654, January.
    10. Kundu, Debasis & Gupta, Arjun K., 2014. "On bivariate Weibull-Geometric distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 19-29.
    11. Muhammad Mohsin & Hannes Kazianka & Jürgen Pilz & Albrecht Gebhardt, 2014. "A new bivariate exponential distribution for modeling moderately negative dependence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 123-148, March.
    12. He, Bo & Cui, Weimin & Du, Xiaofeng, 2016. "An additive modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 28-37.
    13. Debasis Kundu, 2022. "Bivariate Semi-parametric Singular Family of Distributions and its Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 846-872, November.
    14. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    15. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    16. Lee, Hyunju & Cha, Ji Hwan, 2014. "On construction of general classes of bivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 151-159.
    17. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    18. Franco, Manuel & Vivo, Juana-María, 2010. "A multivariate extension of Sarhan and Balakrishnan's bivariate distribution and its ageing and dependence properties," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 491-499, March.
    19. Tanachai Somsak & Thanapong Suwanasri & Cattareeya Suwanasri, 2021. "Lifetime Estimation Based Health Index and Conditional Factor for Underground Cable System," Energies, MDPI, vol. 14(23), pages 1-15, December.
    20. Kundu, Debasis & Franco, Manuel & Vivo, Juana-Maria, 2014. "Multivariate distributions with proportional reversed hazard marginals," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 98-112.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:12:y:2025:i:3:p:27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.