IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1737-1747.html
   My bibliography  Save this article

A new class of semiparametric semivariogram and nugget estimators

Author

Listed:
  • Carmack, Patrick S.
  • Spence, Jeffrey S.
  • Schucany, William R.
  • Gunst, Richard F.
  • Lin, Qihua
  • Haley, Robert W.

Abstract

Several authors have proposed nonparametric semivariogram estimators. Shapiro and Botha (1991) did so by application of Bochner’s theorem and Cherry et al. (1996) further investigated this technique where it performed favorably against parametric estimators even when data were generated under the parametric model. While the former makes allowances for a prescribed nugget and the latter outlines a possible approach, neither of these demonstrate nugget estimation in practice, which is essential to spatial modeling and proper statistical inference. We propose a modified form of this method, which admits practical nugget estimation and broadens the basis. This is achieved by a simple change to the basis and an appropriate restriction of the node space as dictated by the first root of the Bessel function of the first kind of order ν. The efficacy of this new unsupervised semiparametric method is demonstrated via application and simulation, where it is shown to be comparable with correctly specified parametric models while outperforming misspecified ones. We conclude with remarks about selecting the appropriate basis and node space definition.

Suggested Citation

  • Carmack, Patrick S. & Spence, Jeffrey S. & Schucany, William R. & Gunst, Richard F. & Lin, Qihua & Haley, Robert W., 2012. "A new class of semiparametric semivariogram and nugget estimators," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1737-1747.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1737-1747
    DOI: 10.1016/j.csda.2011.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311003744
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shapiro, A. & Botha, J. D., 1991. "Variogram fitting with a general class of conditionally nonnegative definite functions," Computational Statistics & Data Analysis, Elsevier, vol. 11(1), pages 87-96, January.
    2. Spence, Jeffrey S. & Carmack, Patrick S. & Gunst, Richard F. & Schucany, William R. & Woodward, Wayne A. & Haley, Robert W., 2007. "Accounting for Spatial Dependence in the Analysis of SPECT Brain Imaging Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 464-473, June.
    3. Genton, Marc G. & Gorsich, David J., 2002. "Nonparametric variogram and covariogram estimation with Fourier-Bessel matrices," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 47-57, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrianakis, Ioannis & Challenor, Peter G., 2012. "The effect of the nugget on Gaussian process emulators of computer models," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4215-4228.
    2. Sompop Moonchai & Nawinda Chutsagulprom, 2020. "Semiparametric Semivariogram Modeling with a Scaling Criterion for Node Spacing: A Case Study of Solar Radiation Distribution in Thailand," Mathematics, MDPI, vol. 8(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghulam A. Qadir & Ying Sun, 2021. "Semiparametric estimation of cross‐covariance functions for multivariate random fields," Biometrics, The International Biometric Society, vol. 77(2), pages 547-560, June.
    2. Sompop Moonchai & Nawinda Chutsagulprom, 2020. "Semiparametric Semivariogram Modeling with a Scaling Criterion for Node Spacing: A Case Study of Solar Radiation Distribution in Thailand," Mathematics, MDPI, vol. 8(12), pages 1-16, December.
    3. Rolando Biscay Lirio & Dunia Camejo & Jean-Michel Loubes & Lilian Muñiz Alvarez, 2014. "Estimation of covariance functions by a fully data-driven model selection procedure and its application to Kriging spatial interpolation of real rainfall data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 149-174, June.
    4. A. Meilán-Vila & R. Fernández-Casal & R. M. Crujeiras & M. Francisco-Fernández, 2021. "A computational validation for nonparametric assessment of spatial trends," Computational Statistics, Springer, vol. 36(4), pages 2939-2965, December.
    5. José-María Montero & Coro Chasco & Beatriz Larraz, 2010. "Building an environmental quality index for a big city: a spatial interpolation approach combined with a distance indicator," Journal of Geographical Systems, Springer, vol. 12(4), pages 435-459, December.
    6. Patrick Carmack & Jeffrey Spence & William Schucany, 2012. "Generalised correlated cross-validation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 269-282.
    7. Genton, Marc G. & Gorsich, David J., 2002. "Nonparametric variogram and covariogram estimation with Fourier-Bessel matrices," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 47-57, November.
    8. Hongtu Zhu & Jianqing Fan & Linglong Kong, 2014. "Spatially Varying Coefficient Model for Neuroimaging Data With Jump Discontinuities," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1084-1098, September.
    9. Castillo-Páez, Sergio & Fernández-Casal, Rubén & García-Soidán, Pilar, 2019. "A nonparametric bootstrap method for spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 1-15.
    10. Kristjana Ýr Jónsdóttir & Anders Rønn-Nielsen & Kim Mouridsen & Eva B. Vedel Jensen, 2013. "Lévy-based Modelling in Brain Imaging," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 511-529, September.
    11. Dursun Aydin & Ersin Yilmaz, 2021. "Censored Nonparametric Time-Series Analysis with Autoregressive Error Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 169-202, August.
    12. Zhou Lan & Brian J. Reich & Joseph Guinness & Dipankar Bandyopadhyay & Liangsuo Ma & F. Gerard Moeller, 2022. "Geostatistical modeling of positive‐definite matrices: An application to diffusion tensor imaging," Biometrics, The International Biometric Society, vol. 78(2), pages 548-559, June.
    13. García-Soidán, Pilar H. & González-Manteiga, Wenceslao & Febrero-Bande, Manuel, 2003. "Local linear regression estimation of the variogram," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 169-179, August.
    14. Miro R. Powojowski, 2008. "Isotropic spectral additive models of the covariogram," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 739-753, September.
    15. Bowman, Adrian W. & Crujeiras, Rosa M., 2013. "Inference for variograms," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 19-31.
    16. Montero, José María & Larraz, Beatriz & Chasco, Coro, 2008. "Building an Environmental Quality Index for a big city: a spatial interpolation approach with DP2," MPRA Paper 10736, University Library of Munich, Germany.
    17. Rehman, Salim U. & Shapiro, A., 1996. "An integral transform approach to cross-variograms modeling," Computational Statistics & Data Analysis, Elsevier, vol. 22(3), pages 213-233, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1737-1747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.