IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v41y2002i1p47-57.html
   My bibliography  Save this article

Nonparametric variogram and covariogram estimation with Fourier-Bessel matrices

Author

Listed:
  • Genton, Marc G.
  • Gorsich, David J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Genton, Marc G. & Gorsich, David J., 2002. "Nonparametric variogram and covariogram estimation with Fourier-Bessel matrices," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 47-57, November.
  • Handle: RePEc:eee:csdana:v:41:y:2002:i:1:p:47-57
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(02)00062-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shapiro, A. & Botha, J. D., 1991. "Variogram fitting with a general class of conditionally nonnegative definite functions," Computational Statistics & Data Analysis, Elsevier, vol. 11(1), pages 87-96, January.
    2. Gorsich, David J. & Genton, Marc G. & Strang, Gilbert, 2002. "Eigenstructures of Spatial Design Matrices," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 138-165, January.
    3. Genton, Marc G., 1999. "The correlation structure of the sample autocovariance function for a particular class of time series with elliptically contoured distribution," Statistics & Probability Letters, Elsevier, vol. 41(2), pages 131-137, January.
    4. Genton, Marc G. & He, Li & Liu, Xiangwei, 2001. "Moments of skew-normal random vectors and their quadratic forms," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 319-325, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sompop Moonchai & Nawinda Chutsagulprom, 2020. "Semiparametric Semivariogram Modeling with a Scaling Criterion for Node Spacing: A Case Study of Solar Radiation Distribution in Thailand," Mathematics, MDPI, vol. 8(12), pages 1-16, December.
    2. Ghulam A. Qadir & Ying Sun, 2021. "Semiparametric estimation of cross‐covariance functions for multivariate random fields," Biometrics, The International Biometric Society, vol. 77(2), pages 547-560, June.
    3. Carmack, Patrick S. & Spence, Jeffrey S. & Schucany, William R. & Gunst, Richard F. & Lin, Qihua & Haley, Robert W., 2012. "A new class of semiparametric semivariogram and nugget estimators," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1737-1747.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reinaldo Arellano-Valle & Marc Genton, 2010. "An invariance property of quadratic forms in random vectors with a selection distribution, with application to sample variogram and covariogram estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 363-381, April.
    2. Kim, Hyoung-Moon & Mallick, Bani K., 2003. "Moments of random vectors with skew t distribution and their quadratic forms," Statistics & Probability Letters, Elsevier, vol. 63(4), pages 417-423, July.
    3. Kim, Hyoung-Moon, 2008. "A note on scale mixtures of skew normal distribution," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1694-1701, September.
    4. Genton, Mark G. & Ruiz-Gazen, Anne, 2009. "Visualizing Influential Observations in Dependent Data," TSE Working Papers 09-051, Toulouse School of Economics (TSE).
    5. Fang, B.Q., 2006. "Sample mean, covariance and T2 statistic of the skew elliptical model," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1675-1690, August.
    6. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    7. M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 1-43, June.
    8. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    9. Arjun Gupta & John Chen, 2004. "A class of multivariate skew-normal models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(2), pages 305-315, June.
    10. Wang, Tonghui & Li, Baokun & Gupta, Arjun K., 2009. "Distribution of quadratic forms under skew normal settings," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 533-545, March.
    11. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    12. Abdi, Me’raj & Madadi, Mohsen & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2021. "Family of mean-mixtures of multivariate normal distributions: Properties, inference and assessment of multivariate skewness," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    13. Rolando Biscay Lirio & Dunia Camejo & Jean-Michel Loubes & Lilian Muñiz Alvarez, 2014. "Estimation of covariance functions by a fully data-driven model selection procedure and its application to Kriging spatial interpolation of real rainfall data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 149-174, June.
    14. A. Meilán-Vila & R. Fernández-Casal & R. M. Crujeiras & M. Francisco-Fernández, 2021. "A computational validation for nonparametric assessment of spatial trends," Computational Statistics, Springer, vol. 36(4), pages 2939-2965, December.
    15. Angela Montanari & Cinzia Viroli, 2010. "A skew-normal factor model for the analysis of student satisfaction towards university courses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 473-487.
    16. Fang, B.Q., 2005. "Noncentral quadratic forms of the skew elliptical variables," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 410-430, August.
    17. Naveau, Philippe & Genton, Marc G. & Shen, Xilin, 2005. "A skewed Kalman filter," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 382-400, June.
    18. Fang, B. Q., 2003. "The skew elliptical distributions and their quadratic forms," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 298-314, November.
    19. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    20. Gupta, Arjun K. & González-Farías, Graciela & Domínguez-Molina, J. Armando, 2004. "A multivariate skew normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 89(1), pages 181-190, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:41:y:2002:i:1:p:47-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.