IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v40y2013i3p511-529.html
   My bibliography  Save this article

Lévy-based Modelling in Brain Imaging

Author

Listed:
  • KRISTJANA ÝR JÓNSDÓTTIR
  • ANDERS RØNN-NIELSEN
  • KIM MOURIDSEN
  • EVA B. VEDEL JENSEN

Abstract

No abstract is available for this item.

Suggested Citation

  • Kristjana Ýr Jónsdóttir & Anders Rønn-Nielsen & Kim Mouridsen & Eva B. Vedel Jensen, 2013. "Lévy-based Modelling in Brain Imaging," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 511-529, September.
  • Handle: RePEc:bla:scjsta:v:40:y:2013:i:3:p:511-529
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/sjos.12000
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Guttorp & Tilmann Gneiting, 2006. "Studies in the history of probability and statistics XLIX On the Matern correlation family," Biometrika, Biometrika Trust, vol. 93(4), pages 989-995, December.
    2. Spence, Jeffrey S. & Carmack, Patrick S. & Gunst, Richard F. & Schucany, William R. & Woodward, Wayne A. & Haley, Robert W., 2007. "Accounting for Spatial Dependence in the Analysis of SPECT Brain Imaging Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 464-473, June.
    3. Bowman, F. Dubois, 2007. "Spatiotemporal Models for Region of Interest Analyses of Functional Neuroimaging Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 442-453, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonte, Dan & Veraart, Almut E.D., 2024. "Simulation methods and error analysis for trawl processes and ambit fields," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 518-542.
    2. Shen, Zhuan & Zhang, Honghui & Du, Lin & Deng, Zichen & Kurths, Jürgen, 2023. "Initiation and termination of epilepsy induced by Lévy noise: A view from the cortical neural mass model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Rønn-Nielsen, Anders & Stehr, Mads, 2022. "Extremes of Lévy-driven spatial random fields with regularly varying Lévy measure," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 19-49.
    4. Robin Merkle & Andrea Barth, 2023. "On Properties and Applications of Gaussian Subordinated Lévy Fields," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-33, June.
    5. Heinrich, Claudio & Pakkanen, Mikko S. & Veraart, Almut E.D., 2019. "Hybrid simulation scheme for volatility modulated moving average fields," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 224-244.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    2. Georges Bresson & Cheng Hsiao, 2011. "A functional connectivity approach for modeling cross-sectional dependence with an application to the estimation of hedonic housing prices in Paris," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 501-529, December.
    3. Victor De Oliveira & Zifei Han, 2022. "On Information About Covariance Parameters in Gaussian Matérn Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 690-712, December.
    4. Sandra De Iaco & Donato Posa & Claudia Cappello & Sabrina Maggio, 2021. "On Some Characteristics of Gaussian Covariance Functions," International Statistical Review, International Statistical Institute, vol. 89(1), pages 36-53, April.
    5. Hansen, Linda V. & Thorarinsdottir, Thordis L., 2013. "A note on moving average models for Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 850-855.
    6. Heinrich, Claudio & Pakkanen, Mikko S. & Veraart, Almut E.D., 2019. "Hybrid simulation scheme for volatility modulated moving average fields," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 224-244.
    7. Zifeng Zhao & Peng Shi & Xiaoping Feng, 2021. "Knowledge Learning of Insurance Risks Using Dependence Models," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1177-1196, July.
    8. Nesbitt, Peter & Blake, Lewis R. & Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo K. & Newman, Alexandra & Brickey, Andrea, 2021. "Underground mine scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 294(1), pages 340-352.
    9. Unn Dahlén & Johan Lindström & Marko Scholze, 2020. "Spatiotemporal reconstructions of global CO2‐fluxes using Gaussian Markov random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    10. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    11. José-María Montero & Coro Chasco & Beatriz Larraz, 2010. "Building an environmental quality index for a big city: a spatial interpolation approach combined with a distance indicator," Journal of Geographical Systems, Springer, vol. 12(4), pages 435-459, December.
    12. Patrick Carmack & Jeffrey Spence & William Schucany, 2012. "Generalised correlated cross-validation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 269-282.
    13. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Hongtu Zhu & Jianqing Fan & Linglong Kong, 2014. "Spatially Varying Coefficient Model for Neuroimaging Data With Jump Discontinuities," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1084-1098, September.
    15. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    16. Akim Adekpedjou & Sophie Dabo‐Niang, 2021. "Semiparametric estimation with spatially correlated recurrent events," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1097-1126, December.
    17. Brian J. Reich & Joseph Guinness & Simon N. Vandekar & Russell T. Shinohara & Ana†Maria Staicu, 2018. "Fully Bayesian spectral methods for imaging data," Biometrics, The International Biometric Society, vol. 74(2), pages 645-652, June.
    18. Cheng, Dan, 2024. "Smooth Matérn Gaussian random fields: Euler characteristic, expected number and height distribution of critical points," Statistics & Probability Letters, Elsevier, vol. 210(C).
    19. Litvinenko, Alexander & Sun, Ying & Genton, Marc G. & Keyes, David E., 2019. "Likelihood approximation with hierarchical matrices for large spatial datasets," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 115-132.
    20. Ghulam A. Qadir & Ying Sun, 2021. "Semiparametric estimation of cross‐covariance functions for multivariate random fields," Biometrics, The International Biometric Society, vol. 77(2), pages 547-560, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:40:y:2013:i:3:p:511-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.