IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v70y2008i4p739-753.html
   My bibliography  Save this article

Isotropic spectral additive models of the covariogram

Author

Listed:
  • Miro R. Powojowski

Abstract

Summary. A class of additive covariance models of an isotropic random process is proposed, motivated by the spectral representation of the covariance function. Model parameters are estimated by using a special case of the minimum norm quadratic estimation estimator, whose asymptotic moments have convenient expressions in terms of spectral densities. Fitting a model in this class is equivalent to fitting an additive model of the spectral density. The class of spectral additive models proposed is dense in the set of summable covariance functions having a spectral density, allowing approximately unbiased estimation of an arbitrary covariance function and its spectral density. Theoretical results are supported by numerical comparison with commonly used models. A procedure to assist model selection is proposed. The techniques are illustrated with an application to contaminant data.

Suggested Citation

  • Miro R. Powojowski, 2008. "Isotropic spectral additive models of the covariogram," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 739-753, September.
  • Handle: RePEc:bla:jorssb:v:70:y:2008:i:4:p:739-753
    DOI: 10.1111/j.1467-9868.2008.00653.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2008.00653.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2008.00653.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shapiro, A. & Botha, J. D., 1991. "Variogram fitting with a general class of conditionally nonnegative definite functions," Computational Statistics & Data Analysis, Elsevier, vol. 11(1), pages 87-96, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rolando Biscay Lirio & Dunia Camejo & Jean-Michel Loubes & Lilian Muñiz Alvarez, 2014. "Estimation of covariance functions by a fully data-driven model selection procedure and its application to Kriging spatial interpolation of real rainfall data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 149-174, June.
    2. A. Meilán-Vila & R. Fernández-Casal & R. M. Crujeiras & M. Francisco-Fernández, 2021. "A computational validation for nonparametric assessment of spatial trends," Computational Statistics, Springer, vol. 36(4), pages 2939-2965, December.
    3. Genton, Marc G. & Gorsich, David J., 2002. "Nonparametric variogram and covariogram estimation with Fourier-Bessel matrices," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 47-57, November.
    4. Castillo-Páez, Sergio & Fernández-Casal, Rubén & García-Soidán, Pilar, 2019. "A nonparametric bootstrap method for spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 1-15.
    5. Dursun Aydin & Ersin Yilmaz, 2021. "Censored Nonparametric Time-Series Analysis with Autoregressive Error Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 169-202, August.
    6. Ghulam A. Qadir & Ying Sun, 2021. "Semiparametric estimation of cross‐covariance functions for multivariate random fields," Biometrics, The International Biometric Society, vol. 77(2), pages 547-560, June.
    7. Carmack, Patrick S. & Spence, Jeffrey S. & Schucany, William R. & Gunst, Richard F. & Lin, Qihua & Haley, Robert W., 2012. "A new class of semiparametric semivariogram and nugget estimators," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1737-1747.
    8. Sompop Moonchai & Nawinda Chutsagulprom, 2020. "Semiparametric Semivariogram Modeling with a Scaling Criterion for Node Spacing: A Case Study of Solar Radiation Distribution in Thailand," Mathematics, MDPI, vol. 8(12), pages 1-16, December.
    9. García-Soidán, Pilar H. & González-Manteiga, Wenceslao & Febrero-Bande, Manuel, 2003. "Local linear regression estimation of the variogram," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 169-179, August.
    10. Bowman, Adrian W. & Crujeiras, Rosa M., 2013. "Inference for variograms," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 19-31.
    11. Rehman, Salim U. & Shapiro, A., 1996. "An integral transform approach to cross-variograms modeling," Computational Statistics & Data Analysis, Elsevier, vol. 22(3), pages 213-233, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:70:y:2008:i:4:p:739-753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.