IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2173-d457341.html
   My bibliography  Save this article

Semiparametric Semivariogram Modeling with a Scaling Criterion for Node Spacing: A Case Study of Solar Radiation Distribution in Thailand

Author

Listed:
  • Sompop Moonchai

    (Advanced Research Center for Computational Simulation (ARCCoS), Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
    Centre of Excellence in Mathematics, CHE, Si Ayutthaya Road, Bangkok 10400, Thailand)

  • Nawinda Chutsagulprom

    (Advanced Research Center for Computational Simulation (ARCCoS), Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
    Centre of Excellence in Mathematics, CHE, Si Ayutthaya Road, Bangkok 10400, Thailand)

Abstract

Geostatistical interpolation methods, sometimes referred to as kriging, have been proven effective and efficient for the estimation of target quantity at ungauged sites. The merit of the kriging approach relies heavily on the semivariograms in which the parametric functions are prevalently used. In this work, we explore the semiparametric semivariogram where no close-form semivariogram is required. By additionally enforcing the monotonicity condition in order to suppress the presence of spurious oscillation, a scaling of the nodes of the semiparametric kriging is proposed. To this end, the solar radiation estimates across extensive but unmeasured regions in Thailand using three different semivariogram models are undertaken. A cross validation analysis is carried out in order to justify the performance of each approach. The best results are achieved by the semiparametric model with an improvement of around 7–13% compared to those obtained from the parametric semivariograms.

Suggested Citation

  • Sompop Moonchai & Nawinda Chutsagulprom, 2020. "Semiparametric Semivariogram Modeling with a Scaling Criterion for Node Spacing: A Case Study of Solar Radiation Distribution in Thailand," Mathematics, MDPI, vol. 8(12), pages 1-16, December.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2173-:d:457341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shapiro, A. & Botha, J. D., 1991. "Variogram fitting with a general class of conditionally nonnegative definite functions," Computational Statistics & Data Analysis, Elsevier, vol. 11(1), pages 87-96, January.
    2. Wu, Wei & Tang, Xiao-Ping & Yang, Chao & Guo, Nai-Jia & Liu, Hong-Bin, 2013. "Spatial estimation of monthly mean daily sunshine hours and solar radiation across mainland China," Renewable Energy, Elsevier, vol. 57(C), pages 546-553.
    3. Carmack, Patrick S. & Spence, Jeffrey S. & Schucany, William R. & Gunst, Richard F. & Lin, Qihua & Haley, Robert W., 2012. "A new class of semiparametric semivariogram and nugget estimators," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1737-1747.
    4. Genton, Marc G. & Gorsich, David J., 2002. "Nonparametric variogram and covariogram estimation with Fourier-Bessel matrices," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 47-57, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ailish Craig & Craig W. Hutton & Justin Sheffield, 2022. "Social Capital Typologies and Sustainable Development: Spatial Patterns in the Central and Southern Regions of Malawi," Sustainability, MDPI, vol. 14(15), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghulam A. Qadir & Ying Sun, 2021. "Semiparametric estimation of cross‐covariance functions for multivariate random fields," Biometrics, The International Biometric Society, vol. 77(2), pages 547-560, June.
    2. Carmack, Patrick S. & Spence, Jeffrey S. & Schucany, William R. & Gunst, Richard F. & Lin, Qihua & Haley, Robert W., 2012. "A new class of semiparametric semivariogram and nugget estimators," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1737-1747.
    3. Andrianakis, Ioannis & Challenor, Peter G., 2012. "The effect of the nugget on Gaussian process emulators of computer models," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4215-4228.
    4. Rolando Biscay Lirio & Dunia Camejo & Jean-Michel Loubes & Lilian Muñiz Alvarez, 2014. "Estimation of covariance functions by a fully data-driven model selection procedure and its application to Kriging spatial interpolation of real rainfall data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 149-174, June.
    5. A. Meilán-Vila & R. Fernández-Casal & R. M. Crujeiras & M. Francisco-Fernández, 2021. "A computational validation for nonparametric assessment of spatial trends," Computational Statistics, Springer, vol. 36(4), pages 2939-2965, December.
    6. Genton, Marc G. & Gorsich, David J., 2002. "Nonparametric variogram and covariogram estimation with Fourier-Bessel matrices," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 47-57, November.
    7. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    8. Castillo-Páez, Sergio & Fernández-Casal, Rubén & García-Soidán, Pilar, 2019. "A nonparametric bootstrap method for spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 1-15.
    9. Dursun Aydin & Ersin Yilmaz, 2021. "Censored Nonparametric Time-Series Analysis with Autoregressive Error Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 169-202, August.
    10. Soulis, Konstantinos X. & Manolakos, Dimitris & Ntavou, Erika & Kosmadakis, George, 2022. "A geospatial analysis approach for the operational assessment of solar ORC systems. Case study: Performance evaluation of a two-stage solar ORC engine in Greece," Renewable Energy, Elsevier, vol. 181(C), pages 116-128.
    11. Ming, Zeng & Shaojie, Ouyang & Hui, Shi & Yujian, Ge, 2015. "Is the “Sun” still hot in China? The study of the present situation, problems and trends of the photovoltaic industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1224-1237.
    12. García-Soidán, Pilar H. & González-Manteiga, Wenceslao & Febrero-Bande, Manuel, 2003. "Local linear regression estimation of the variogram," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 169-179, August.
    13. Miro R. Powojowski, 2008. "Isotropic spectral additive models of the covariogram," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 739-753, September.
    14. Bowman, Adrian W. & Crujeiras, Rosa M., 2013. "Inference for variograms," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 19-31.
    15. Rehman, Salim U. & Shapiro, A., 1996. "An integral transform approach to cross-variograms modeling," Computational Statistics & Data Analysis, Elsevier, vol. 22(3), pages 213-233, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2173-:d:457341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.