IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v46y2004i3p441-458.html
   My bibliography  Save this article

Posterior analysis of latent competing risk models by parallel tempering

Author

Listed:
  • Kozumi, Hideo

Abstract

No abstract is available for this item.

Suggested Citation

  • Kozumi, Hideo, 2004. "Posterior analysis of latent competing risk models by parallel tempering," Computational Statistics & Data Analysis, Elsevier, vol. 46(3), pages 441-458, June.
  • Handle: RePEc:eee:csdana:v:46:y:2004:i:3:p:441-458
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(03)00182-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Reiser & I. Guttman & Dennis K. J. Lin & Frank M. Guess & John S. Usher, 1995. "Bayesian Inference for Masked System Lifetime Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(1), pages 79-90, March.
    2. Mazucheli, Josmar & Louzada-Neto, Francisco & Achcar, Jorge A., 2001. "Bayesian inference for polyhazard models in the presence of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 38(1), pages 1-14, November.
    3. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    4. Kuo, Lynn & Yang, Tae Young, 2000. "Bayesian reliability modeling for masked system lifetime data," Statistics & Probability Letters, Elsevier, vol. 47(3), pages 229-241, April.
    5. Stephen W. Lagakos & Thomas A. Louis, 1988. "Use of Tumour Lethality to Interpret Tumorigenicity Experiments Lacking Cause‐Of‐Death Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(2), pages 169-179, June.
    6. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    7. Song, Xin-Yuan & Lee, Sik-Yum, 2002. "A Bayesian model selection method with applications," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 539-557, September.
    8. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazucheli, Josmar & Louzada-Neto, Francisco & Achcar, Jorge A., 2001. "Bayesian inference for polyhazard models in the presence of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 38(1), pages 1-14, November.
    2. Ungolo, Francesco & Kleinow, Torsten & Macdonald, Angus S., 2020. "A hierarchical model for the joint mortality analysis of pension scheme data with missing covariates," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 68-84.
    3. Park, Byung-Jung & Zhang, Yunlong & Lord, Dominique, 2010. "Bayesian mixture modeling approach to account for heterogeneity in speed data," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 662-673, June.
    4. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    5. Kim Jin Gyo & Menzefricke Ulrich & Feinberg Fred M., 2004. "Assessing Heterogeneity in Discrete Choice Models Using a Dirichlet Process Prior," Review of Marketing Science, De Gruyter, vol. 2(1), pages 1-41, January.
    6. Rufo, M.J. & Martín, J. & Pérez, C.J., 2010. "New approaches to compute Bayes factor in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3324-3335, December.
    7. S. Upadhyay & M. Peshwani, 2008. "Posterior analysis of lognormal regression models using the Gibbs sampler," Statistical Papers, Springer, vol. 49(1), pages 59-85, March.
    8. Moya, Blake & Walker, Stephen G., 2024. "Full uncertainty analysis for Bayesian nonparametric mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    9. Jia-Chiun Pan & Chih-Min Liu & Hai-Gwo Hwu & Guan-Hua Huang, 2015. "Allocation Variable-Based Probabilistic Algorithm to Deal with Label Switching Problem in Bayesian Mixture Models," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-23, October.
    10. Weber, Anett & Steiner, Winfried J., 2021. "Modeling price response from retail sales: An empirical comparison of models with different representations of heterogeneity," European Journal of Operational Research, Elsevier, vol. 294(3), pages 843-859.
    11. J. Griffin & M. Steel, 2008. "Flexible mixture modelling of stochastic frontiers," Journal of Productivity Analysis, Springer, vol. 29(1), pages 33-50, February.
    12. Jonathan Jaeger & Philippe Lambert, 2014. "Bayesian penalized smoothing approaches in models specified using differential equations with unknown error distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2709-2726, December.
    13. Panagiotis Papastamoulis & George Iliopoulos, 2013. "On the Convergence Rate of Random Permutation Sampler and ECR Algorithm in Missing Data Models," Methodology and Computing in Applied Probability, Springer, vol. 15(2), pages 293-304, June.
    14. Komárek, Arnost, 2009. "A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3932-3947, October.
    15. You, Na & Dai, Hongsheng & Wang, Xueqin & Yu, Qingyun, 2024. "Sequential estimation for mixture of regression models for heterogeneous population," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    16. José Dias & Jeroen Vermunt, 2008. "A bootstrap-based aggregate classifier for model-based clustering," Computational Statistics, Springer, vol. 23(4), pages 643-659, October.
    17. A. Pollice & M. Bilancia, 2000. "A hierarchical finite mixture model for Bayesian classification in the presence of auxiliary information," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3-4), pages 109-131.
    18. Sanjib Basu & Ram C. Tiwari, 2010. "Breast cancer survival, competing risks and mixture cure model: a Bayesian analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 307-329, April.
    19. Qiqing Yu & G. Wong & Hao Qin & Jiaping Wang, 2012. "Random partition masking model for censored and masked competing risks data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 69-85, February.
    20. Roy Costilla & Ivy Liu & Richard Arnold & Daniel Fernández, 2019. "Bayesian model-based clustering for longitudinal ordinal data," Computational Statistics, Springer, vol. 34(3), pages 1015-1038, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:46:y:2004:i:3:p:441-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.