IDEAS home Printed from https://ideas.repec.org/a/kap/qmktec/v11y2013i3d10.1007_s11129-013-9133-3.html
   My bibliography  Save this article

A robust approach to measure latent, time-varying equity in hierarchical branding structures

Author

Listed:
  • Sudhir Voleti

    (Indian School of Business)

  • Pulak Ghosh

    (Indian Institute of Management)

Abstract

The literature suggests that brand equity can be split into two parts - an attribute-based equity and a non-attribute based one that captures consumer preferences beyond the utility offered by individual attributes. In addition to measuring attribute-based equity, firms deploying portfolios of products within complex branding structures often seek to measure the presence, distribution and evolution of these potentially heterogeneous non-attribute based unique branding associations - which we label ‘intangible equity’ – at each distinct layer of a product’s brand hierarchy. We develop and operationalize a robust and flexible Bayesian semiparametric model to first separate the attribute-based equity from intangible equity, to jointly estimate this multi-level intangible equity and to allow it to exhibit state-dependence using a random-walk prior. The model is empirically illustrated on syndicated US national beer sales data. We find significant, heterogeneous and temporally stable intangible equity presence across the brand hierarchy and highlight some substantive implications arising therein.

Suggested Citation

  • Sudhir Voleti & Pulak Ghosh, 2013. "A robust approach to measure latent, time-varying equity in hierarchical branding structures," Quantitative Marketing and Economics (QME), Springer, vol. 11(3), pages 289-319, September.
  • Handle: RePEc:kap:qmktec:v:11:y:2013:i:3:d:10.1007_s11129-013-9133-3
    DOI: 10.1007/s11129-013-9133-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11129-013-9133-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11129-013-9133-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joel H. Steckel & Wilfried R. Vanhonacker, 1993. "Cross-Validating Regression Models in Marketing Research," Marketing Science, INFORMS, vol. 12(4), pages 415-427.
    2. Ghosh, Pulak & Basu, Sanjib & Tiwari, Ram C., 2009. "Bayesian Analysis of Cancer Rates From SEER Program Using Parametric and Semiparametric Joinpoint Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 439-452.
    3. Han C. & Carlin B. P., 2001. "Markov Chain Monte Carlo Methods for Computing Bayes Factors: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1122-1132, September.
    4. Sha Yang & Yuxin Chen & Greg Allenby, 2003. "Reply to Comments on “Bayesian Analysis of Simultaneous Demand and Supply”," Quantitative Marketing and Economics (QME), Springer, vol. 1(3), pages 299-304, September.
    5. Yang, Mingan & Dunson, David B. & Baird, Donna, 2010. "Semiparametric Bayes hierarchical models with mean and variance constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2172-2186, September.
    6. Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
    7. Leeflang, P.S.H. & Wittink, Dick R., 2000. "Building models for marketing decisions: past, present and future," Research Report 00F20, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    8. Sha Yang & Yuxin Chen & Greg Allenby, 2003. "Bayesian Analysis of Simultaneous Demand and Supply," Quantitative Marketing and Economics (QME), Springer, vol. 1(3), pages 251-275, September.
    9. Elaine Zanutto & Eric Bradlow, 2006. "Data pruning in consumer choice models," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 267-287, September.
    10. Thomas Otter & Timothy J. Gilbride & Greg M. Allenby, 2011. "Testing Models of Strategic Behavior Characterized by Conditional Likelihoods," Marketing Science, INFORMS, vol. 30(4), pages 686-701, July.
    11. Conley, Timothy G. & Hansen, Christian B. & McCulloch, Robert E. & Rossi, Peter E., 2008. "A semi-parametric Bayesian approach to the instrumental variable problem," Journal of Econometrics, Elsevier, vol. 144(1), pages 276-305, May.
    12. repec:dgr:rugsom:00f20 is not listed on IDEAS
    13. Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.
    14. Michael Braun & Peter S. Fader & Eric T. Bradlow & Howard Kunreuther, 2006. "Modeling the "Pseudodeductible" in Insurance Claims Decisions," Management Science, INFORMS, vol. 52(8), pages 1258-1272, August.
    15. Kevin Lane Keller & Donald R. Lehmann, 2006. "Brands and Branding: Research Findings and Future Priorities," Marketing Science, INFORMS, vol. 25(6), pages 740-759, 11-12.
    16. Peter Lenk & Wayne DeSarbo, 2000. "Bayesian inference for finite mixtures of generalized linear models with random effects," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 93-119, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bradlow, Eric T. & Gangwar, Manish & Kopalle, Praveen & Voleti, Sudhir, 2017. "The Role of Big Data and Predictive Analytics in Retailing," Journal of Retailing, Elsevier, vol. 93(1), pages 79-95.
    2. Amit Mehra & Sajeesh Sajeesh & Sudhir Voleti, 2020. "Impact of Reference Prices on Product Positioning and Profits," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 882-892, April.
    3. Kappe, Eelco & Stadler Blank, Ashley & DeSarbo, Wayne S., 2018. "A random coefficients mixture hidden Markov model for marketing research," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 415-431.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sudhir Voleti & Praveen K. Kopalle & Pulak Ghosh, 2015. "An Interproduct Competition Model Incorporating Branding Hierarchy and Product Similarities Using Store-Level Data," Management Science, INFORMS, vol. 61(11), pages 2720-2738, November.
    2. Voleti, Sudhir & Srinivasan, V. & Ghosh, Pulak, 2017. "An approach to improve the predictive power of choice-based conjoint analysis," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 325-335.
    3. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    4. Yang Li & Asim Ansari, 2014. "A Bayesian Semiparametric Approach for Endogeneity and Heterogeneity in Choice Models," Management Science, INFORMS, vol. 60(5), pages 1161-1179, May.
    5. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    6. Philippe Aurier & Anne Broz-Giroux, 2014. "Modeling advertising impact at campaign level: Empirical generalizations relative to long-term advertising profit contribution and its antecedents," Marketing Letters, Springer, vol. 25(2), pages 193-206, June.
    7. Han, Yoonju & Chandukala, Sandeep R. & Li, Shibo, 2022. "Impact of different types of in-store displays on consumer purchase behavior," Journal of Retailing, Elsevier, vol. 98(3), pages 432-452.
    8. Albers, Sönke, 2012. "Optimizable and implementable aggregate response modeling for marketing decision support," International Journal of Research in Marketing, Elsevier, vol. 29(2), pages 111-122.
    9. Yonezawa, Koichi & Gomez, Miguel I. & Richards, Timothy J., 2018. "The Robinson-Patman Act and Vertical Relationships in Food Retailing," 2018 Annual Meeting, August 5-7, Washington, D.C. 274204, Agricultural and Applied Economics Association.
    10. Sha Yang & Shijie Lu & Xianghua Lu, 2014. "Modeling Competition and Its Impact on Paid-Search Advertising," Marketing Science, INFORMS, vol. 33(1), pages 134-153, January.
    11. Joan Costa-Font & Sergi Jiménez-Martín & Cristina Vilaplana, 2016. "Does long-term care subsidisation reduce unnecessary hospitalisations?," Economics Working Papers 1535, Department of Economics and Business, Universitat Pompeu Fabra.
    12. Agarwal, Manoj K. & Ma, Zecong & Park, Chang Hee & Zheng, Yilong, 2022. "The impact of a manufacturer’s financial liquidity on its market strategies and pricing and promotion decisions in retail grocery markets," Journal of Business Research, Elsevier, vol. 142(C), pages 844-857.
    13. Eric T. Bradlow, 2008. "Editorial—Enticing and Publishing the Home Run Paper," Marketing Science, INFORMS, vol. 27(1), pages 4-6, 01-02.
    14. Çakır, Metin & Balagtas, Joseph V., 2014. "Consumer Response to Package Downsizing: Evidence from the Chicago Ice Cream Market," Journal of Retailing, Elsevier, vol. 90(1), pages 1-12.
    15. Costa-Font, Joan & Jiménez-Martínez, Sergi & Vilaplana, Cristina, 2016. "Does long-term care subsidisation reduce hospital admissions?," LSE Research Online Documents on Economics 67911, London School of Economics and Political Science, LSE Library.
    16. Weber, Anett & Steiner, Winfried J., 2021. "Modeling price response from retail sales: An empirical comparison of models with different representations of heterogeneity," European Journal of Operational Research, Elsevier, vol. 294(3), pages 843-859.
    17. Masakazu Ishihara & Andrew T. Ching, 2019. "Dynamic Demand for New and Used Durable Goods Without Physical Depreciation: The Case of Japanese Video Games," Marketing Science, INFORMS, vol. 38(3), pages 392-416, May.
    18. Andrés Musalem & Marcelo Olivares & Eric T. Bradlow & Christian Terwiesch & Daniel Corsten, 2010. "Structural Estimation of the Effect of Out-of-Stocks," Management Science, INFORMS, vol. 56(7), pages 1180-1197, July.
    19. Jiang, Renna & Manchanda, Puneet & Rossi, Peter E., 2009. "Bayesian analysis of random coefficient logit models using aggregate data," Journal of Econometrics, Elsevier, vol. 149(2), pages 136-148, April.
    20. Mark J. Jensen & John M. Maheu, 2018. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," JRFM, MDPI, vol. 11(3), pages 1-29, September.

    More about this item

    Keywords

    Dirichlet Process Priors; Brand equity; Brand hierarchy; Multi-level Modeling; State-dependence;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:11:y:2013:i:3:d:10.1007_s11129-013-9133-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.