IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v96y2005i1p117-135.html
   My bibliography  Save this article

Asymptotics for pooled marginal slicing estimator based on SIR[alpha] approach

Author

Listed:
  • Saracco, Jérôme

Abstract

Pooled marginal slicing (PMS) is a semiparametric method, based on sliced inverse regression (SIR) approach, for achieving dimension reduction in regression problems when the outcome variable y and the regressor x are both assumed to be multidimensional. In this paper, we consider the SIR[alpha] version (combining the SIR-I and SIR-II approaches) of the PMS estimator and we establish the asymptotic distribution of the estimated matrix of interest. Then the asymptotic normality of the eigenprojector on the estimated effective dimension reduction (e.d.r.) space is derived as well as the asymptotic distributions of each estimated e.d.r. direction and its corresponding eigenvalue.

Suggested Citation

  • Saracco, Jérôme, 2005. "Asymptotics for pooled marginal slicing estimator based on SIR[alpha] approach," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 117-135, September.
  • Handle: RePEc:eee:jmvana:v:96:y:2005:i:1:p:117-135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00211-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li K-C. & Aragon Y. & Shedden K. & Thomas Agnan C., 2003. "Dimension Reduction for Multivariate Response Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 99-109, January.
    2. Gannoun, Ali & Girard, Stephane & Guinot, Christiane & Saracco, Jerome, 2004. "Sliced inverse regression in reference curves estimation," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 103-122, May.
    3. Efstathia Bura & R. Dennis Cook, 2001. "Estimating the structural dimension of regressions via parametric inverse regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 393-410.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coudret, R. & Girard, S. & Saracco, J., 2014. "A new sliced inverse regression method for multivariate response," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 285-299.
    2. Wen, Xuerong Meggie, 2010. "On sufficient dimension reduction for proportional censorship model with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1975-1982, August.
    3. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    4. Girard, Stéphane & Lorenzo, Hadrien & Saracco, Jérôme, 2022. "Advanced topics in Sliced Inverse Regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    6. Marie Chavent & Stéphane Girard & Vanessa Kuentz-Simonet & Benoit Liquet & Thi Nguyen & Jérôme Saracco, 2014. "A sliced inverse regression approach for data stream," Computational Statistics, Springer, vol. 29(5), pages 1129-1152, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coudret, R. & Girard, S. & Saracco, J., 2014. "A new sliced inverse regression method for multivariate response," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 285-299.
    2. Heng-Hui Lue, 2010. "On principal Hessian directions for multivariate response regressions," Computational Statistics, Springer, vol. 25(4), pages 619-632, December.
    3. Li, Junlan & Wang, Tao, 2021. "Dimension reduction in binary response regression: A joint modeling approach," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    4. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    5. Noorbaloochi, Siamak & Nelson, David, 2008. "Conditionally specified models and dimension reduction in the exponential families," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1574-1589, September.
    6. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    7. Orea, Luis & Growitsch, Christian & Jamasb, Tooraj, 2012. "Using Supervised Environmental Composites in Production and Efficiency Analyses: An Application to Norwegian Electricity Networks," Efficiency Series Papers 2012/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    8. Yoo, Jae Keun, 2008. "Sufficient dimension reduction for the conditional mean with a categorical predictor in multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1825-1839, September.
    9. Li‐Ping Zhu & Li‐Xing Zhu, 2009. "On distribution‐weighted partial least squares with diverging number of highly correlated predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 525-548, April.
    10. Simila, Timo, 2006. "Self-organizing map visualizing conditional quantile functions with multidimensional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 2097-2110, April.
    11. Andrea Bergesio & María Eugenia Szretter Noste & Víctor J. Yohai, 2021. "A robust proposal of estimation for the sufficient dimension reduction problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 758-783, September.
    12. Pan, Qiujing & Dias, Daniel, 2017. "Sliced inverse regression-based sparse polynomial chaos expansions for reliability analysis in high dimensions," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 484-493.
    13. Dong, Yuexiao & Yu, Zhou & Zhu, Liping, 2015. "Robust inverse regression for dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 71-81.
    14. Dong, Yuexiao & Xia, Qi & Tang, Cheng Yong & Li, Zeda, 2018. "On sufficient dimension reduction with missing responses through estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 67-77.
    15. repec:jss:jstsof:39:i03 is not listed on IDEAS
    16. Li, Lexin & Dennis Cook, R. & Nachtsheim, Christopher J., 2004. "Cluster-based estimation for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 175-193, August.
    17. Donald, Stephen G. & Fortuna, Natércia & Pipiras, Vladas, 2007. "On Rank Estimation In Symmetric Matrices: The Case Of Indefinite Matrix Estimators," Econometric Theory, Cambridge University Press, vol. 23(6), pages 1217-1232, December.
    18. Heng-Hui Lue & Bing-Ran You, 2013. "High-dimensional regression analysis with treatment comparisons," Computational Statistics, Springer, vol. 28(3), pages 1299-1317, June.
    19. Zhu, Li-Ping & Zhu, Li-Xing, 2007. "On kernel method for sliced average variance estimation," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 970-991, May.
    20. Xiangrong Yin & R. Dennis Cook, 2002. "Dimension reduction for the conditional kth moment in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 159-175, May.
    21. Wen, Xuerong Meggie, 2010. "On sufficient dimension reduction for proportional censorship model with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1975-1982, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:96:y:2005:i:1:p:117-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.