IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v99y2015icp109-113.html
   My bibliography  Save this article

A theoretical note on optimal sufficient dimension reduction with singularity

Author

Listed:
  • Yoo, Jae Keun

Abstract

In this paper, we discuss an optimal sufficient dimension reduction through minimizing a quadratic objective function proposed by Cook and Ni (2005) with singular inner-product matrix. Within a less restrictive class of inner-product matrices, a generalized inverse of the consistent estimator of the asymptotic covariance matrix gives us the benefit of χ2 statistic and asymptotic efficiency within a subclass.

Suggested Citation

  • Yoo, Jae Keun, 2015. "A theoretical note on optimal sufficient dimension reduction with singularity," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 109-113.
  • Handle: RePEc:eee:stapro:v:99:y:2015:i:c:p:109-113
    DOI: 10.1016/j.spl.2015.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215000103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ni, Liqiang & Cook, R. Dennis, 2007. "A robust inverse regression estimator," Statistics & Probability Letters, Elsevier, vol. 77(3), pages 343-349, February.
    2. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    3. Jae Keun Yoo & R. Dennis Cook, 2007. "Optimal sufficient dimension reduction for the conditional mean in multivariate regression," Biometrika, Biometrika Trust, vol. 94(1), pages 231-242.
    4. Wen, Xuerong Meggie, 2010. "On sufficient dimension reduction for proportional censorship model with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1975-1982, August.
    5. Cook, R. Dennis & Ni, Liqiang, 2005. "Sufficient Dimension Reduction via Inverse Regression: A Minimum Discrepancy Approach," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 410-428, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    3. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    4. Yoo, Jae Keun, 2008. "Sufficient dimension reduction for the conditional mean with a categorical predictor in multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1825-1839, September.
    5. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    6. Tao, Chenyang & Feng, Jianfeng, 2017. "Canonical kernel dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 131-148.
    7. Yoo, Jae Keun, 2009. "Partial moment-based sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 450-456, February.
    8. Wen, Xuerong Meggie, 2007. "A note on sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 817-821, April.
    9. Zhu, Li-Ping & Yu, Zhou & Zhu, Li-Xing, 2010. "A sparse eigen-decomposition estimation in semiparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 976-986, April.
    10. Wu, Runxiong & Chen, Xin, 2021. "MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    11. Yang, Baoying & Yin, Xiangrong & Zhang, Nan, 2019. "Sufficient variable selection using independence measures for continuous response," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 480-493.
    12. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    13. Paris, Quentin, 2014. "Minimax adaptive dimension reduction for regression," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 186-202.
    14. Sabrina Duarte & Liliana Forzani & Pamela Llop & Rodrigo García Arancibia & Diego Tomassi, 2023. "Socioeconomic Index for Income and Poverty Prediction: A Sufficient Dimension Reduction Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(2), pages 318-346, June.
    15. Forzani, Liliana & García Arancibia, Rodrigo & Llop, Pamela & Tomassi, Diego, 2018. "Supervised dimension reduction for ordinal predictors," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 136-155.
    16. Yoo, Jae Keun & Cook, R. Dennis, 2008. "Response dimension reduction for the conditional mean in multivariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 334-343, December.
    17. Yoo, Jae Keun, 2008. "A novel moment-based sufficient dimension reduction approach in multivariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3843-3851, March.
    18. Yu, Zhou & Zhu, Lixing & Wen, Xuerong Meggie, 2012. "On model-free conditional coordinate tests for regressions," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 61-72.
    19. Heng-Hui Lue, 2010. "On principal Hessian directions for multivariate response regressions," Computational Statistics, Springer, vol. 25(4), pages 619-632, December.
    20. Adragni, Kofi Placid & Raim, Andrew M., 2014. "ldr: An R Software Package for Likelihood-Based Sufficient Dimension Reduction," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i03).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:99:y:2015:i:c:p:109-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.