IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i12p3348-3358.html
   My bibliography  Save this article

A majorization algorithm for simultaneous parameter estimation in robust exploratory factor analysis

Author

Listed:
  • Unkel, S.
  • Trendafilov, N.T.

Abstract

A new approach for fitting the exploratory factor analysis (EFA) model is considered. The EFA model is fitted directly to the data matrix by minimizing a weighted least squares (WLS) goodness-of-fit measure. The WLS fitting problem is solved by iteratively performing unweighted least squares fitting of the same model. A convergent reweighted least squares algorithm based on iterative majorization is developed. The influence of large residuals in the loss function is curbed using Huber's criterion. This procedure leads to robust EFA that can resist the effect of outliers in the data. Applications to real and simulated data illustrate the performance of the proposed approach.

Suggested Citation

  • Unkel, S. & Trendafilov, N.T., 2010. "A majorization algorithm for simultaneous parameter estimation in robust exploratory factor analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3348-3358, December.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3348-3358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00053-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Groenen, P.J.F. & Giaquinto, P. & Kiers, H.A.L., 2003. "Weighted Majorization Algorithms for Weighted Least Squares Decomposition Models," Econometric Institute Research Papers EI 2003-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Pison, Greet & Rousseeuw, Peter J. & Filzmoser, Peter & Croux, Christophe, 2003. "Robust factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 145-172, January.
    3. Peter Verboon & Willem Heiser, 1992. "Resistant orthogonal procrustes analysis," Journal of Classification, Springer;The Classification Society, vol. 9(2), pages 237-256, December.
    4. de Leeuw, Jan & Lange, Kenneth, 2009. "Sharp quadratic majorization in one dimension," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2471-2484, May.
    5. Becker, Claudia & Gather, Ursula, 2001. "The largest nonidentifiable outlier: a comparison of multivariate simultaneous outlier identification rules," Computational Statistics & Data Analysis, Elsevier, vol. 36(1), pages 119-127, March.
    6. repec:ucp:bkecon:9780226316529 is not listed on IDEAS
    7. Henk Kiers, 1997. "Weighted least squares fitting using ordinary least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 62(2), pages 251-266, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:cup:judgdm:v:9:y:2014:i:5:p:500-509 is not listed on IDEAS
    2. Stegeman, Alwin, 2016. "A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 189-203.
    3. Sundberg, Rolf & Feldmann, Uwe, 2016. "Exploratory factor analysis—Parameter estimation and scores prediction with high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 49-59.
    4. Lars Eldén & Nickolay Trendafilov, 2019. "Semi-sparse PCA," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 164-185, March.
    5. Uno, Kohei & Satomura, Hironori & Adachi, Kohei, 2016. "Fixed factor analysis with clustered factor score constraint," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 265-274.
    6. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    7. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    8. Kohei Uno & Kohei Adachi & Nickolay T. Trendafilov, 2019. "Clustered Common Factor Exploration in Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1048-1067, December.
    9. Emilio Moyano-Díaz & Agustín Martínez-Molina & Fernando P. Ponce, 2014. "The price of gaining: maximization in decision-making, regret and life satisfaction," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 9(5), pages 500-509, September.
    10. Kohei Adachi & Nickolay T. Trendafilov, 2018. "Some Mathematical Properties of the Matrix Decomposition Solution in Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 407-424, June.
    11. Liu, Litao & Cao, Zhi & Liu, Xiaojie & Shi, Lei & Cheng, Shengkui & Liu, Gang, 2020. "Oil security revisited: An assessment based on complex network analysis," Energy, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Leeuw, Jan, 2006. "Principal component analysis of binary data by iterated singular value decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 21-39, January.
    2. Groenen, P.J.F. & Giaquinto, P. & Kiers, H.A.L., 2003. "Weighted Majorization Algorithms for Weighted Least Squares Decomposition Models," Econometric Institute Research Papers EI 2003-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Qing Li & Long Hai Vo, 2021. "Intangible Capital and Innovation: An Empirical Analysis of Vietnamese Enterprises," Economics Discussion / Working Papers 21-02, The University of Western Australia, Department of Economics.
    4. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
    5. Husson, François & Josse, Julie & Saporta, Gilbert, 2016. "Jan de Leeuw and the French School of Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i06).
    6. Jürgen Wellmann & Ursula Gather, 2003. "Identification of outliers in a one-way random effects model," Statistical Papers, Springer, vol. 44(3), pages 335-348, July.
    7. Anthony C. Atkinson & Marco Riani & Andrea Cerioli, 2018. "Cluster detection and clustering with random start forward searches," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 777-798, April.
    8. Metaxas, Theodore & Kallioras, Dimitris, 2013. "Small and medium-sized firms' competitiveness and territorial characteristics/assets: The cases of Bari, Varna and Thessaloniki," MPRA Paper 52446, University Library of Munich, Germany.
    9. Kenneth Lange & Hua Zhou, 2022. "A Legacy of EM Algorithms," International Statistical Review, International Statistical Institute, vol. 90(S1), pages 52-66, December.
    10. Om Prakash Yadav & Shashwati Ray, 2021. "A novel method of preprocessing and modeling ECG signals with Lagrange–Chebyshev interpolating polynomials," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 377-390, June.
    11. Alper Sinan & B. Barıs Alkan, 2015. "A useful approach to identify the multicollinearity in the presence of outliers," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 986-993, May.
    12. Aleš Toman, 2014. "Robust confirmatory factor analysis based on the forward search algorithm," Statistical Papers, Springer, vol. 55(1), pages 233-252, February.
    13. Camila Kolling & José Luis Duarte Ribeiro & Donato Morea & Gianpaolo Iazzolino, 2023. "Corporate social responsibility and circular economy from the perspective of consumers: A cross‐cultural analysis in the cosmetic industry," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(3), pages 1226-1243, May.
    14. Ziwei Zhu & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional principal component analysis with heterogeneous missingness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 2000-2031, November.
    15. Theodore Metaxas, 2012. "Urban Advantages and Disadvantages in Southeastern Europe: An Appreciation of Industrial Firms by Using Exploratory Factor Analysis," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 81-104.
    16. Joni Virta & Niko Lietzén & Henri Nyberg, 2024. "Robust signal dimension estimation via SURE," Statistical Papers, Springer, vol. 65(5), pages 3007-3038, July.
    17. Namgil Lee & Jong-Min Kim, 2018. "Block tensor train decomposition for missing data estimation," Statistical Papers, Springer, vol. 59(4), pages 1283-1305, December.
    18. Zhu, Ziwei & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional principal component analysis with heterogeneous missingness," LSE Research Online Documents on Economics 117647, London School of Economics and Political Science, LSE Library.
    19. Kirschstein, Thomas & Liebscher, Steffen & Becker, Claudia, 2013. "Robust estimation of location and scatter by pruning the minimum spanning tree," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 173-184.
    20. W. Holmes Finch, 2024. "Comparison of Methods for Addressing Outliers in Exploratory Factor Analysis and Impact on Accuracy of Determining the Number of Factors," Stats, MDPI, vol. 7(3), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3348-3358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.