IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v94y2016icp265-274.html
   My bibliography  Save this article

Fixed factor analysis with clustered factor score constraint

Author

Listed:
  • Uno, Kohei
  • Satomura, Hironori
  • Adachi, Kohei

Abstract

In the fixed factor model for factor analysis (FA), common factor scores are treated as fixed parameters. However, they cannot be estimated jointly with the other parameters, since the maximum likelihood (ML) for the model diverges to infinity. In order to avoid the divergence so that all parameters can be jointly estimated, we propose a constrained fixed factor model. Here, observations are classified into clusters, with each cluster characterized by an equivalent factor score. The ML procedure with the proposed model is named fixed clustered FA (FCFA). An iterative algorithm for FCFA is developed, which provides the ML estimates of the factor loadings, unique variances, the classification of observations into clusters, and the cluster factor scores. This FCFA can be viewed as the FA version of Reduced K-means analysis (RKM), in which the principal components are extracted while clustering observations. We compare FCFA, RKM, and a related procedure called Factorial K-means analysis (FKM). We also provide real data examples, which show that FCFA outperforms RKM and FKM in terms of classification accuracy. This result is attributed to the unique variances in FCFA. In other words, the error variances are allowed to be unique to the corresponding variables.

Suggested Citation

  • Uno, Kohei & Satomura, Hironori & Adachi, Kohei, 2016. "Fixed factor analysis with clustered factor score constraint," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 265-274.
  • Handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:265-274
    DOI: 10.1016/j.csda.2015.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731500198X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gale Young, 1941. "Maximum likelihood estimation and factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 6(1), pages 49-53, February.
    2. Timmerman, Marieke E. & Ceulemans, Eva & Kiers, Henk A.L. & Vichi, Maurizio, 2010. "Factorial and reduced K-means reconsidered," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1858-1871, July.
    3. Harry Harman & Wayne Jones, 1966. "Factor analysis by minimizing residuals (minres)," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 351-368, September.
    4. Jos Berge, 1983. "A generalization of Kristof's theorem on the trace of certain matrix products," Psychometrika, Springer;The Psychometric Society, vol. 48(4), pages 519-523, December.
    5. Vichi, Maurizio & Kiers, Henk A. L., 2001. "Factorial k-means analysis for two-way data," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 49-64, July.
    6. Unkel, S. & Trendafilov, N.T., 2010. "A majorization algorithm for simultaneous parameter estimation in robust exploratory factor analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3348-3358, December.
    7. Steffen Unkel & Nickolay T. Trendafilov, 2010. "Simultaneous Parameter Estimation in Exploratory Factor Analysis: An Expository Review," International Statistical Review, International Statistical Institute, vol. 78(3), pages 363-382, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kohei Adachi & Nickolay T. Trendafilov, 2018. "Some Mathematical Properties of the Matrix Decomposition Solution in Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 407-424, June.
    2. Stegeman, Alwin, 2016. "A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 189-203.
    3. Kohei Uno & Kohei Adachi & Nickolay T. Trendafilov, 2019. "Clustered Common Factor Exploration in Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1048-1067, December.
    4. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    5. Kohei Adachi & Nickolay T. Trendafilov, 2018. "Sparsest factor analysis for clustering variables: a matrix decomposition approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 559-585, September.
    6. Roberto Rocci & Stefano Gattone & Maurizio Vichi, 2011. "A New Dimension Reduction Method: Factor Discriminant K-means," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 210-226, July.
    7. Masaki Mitsuhiro & Hiroshi Yadohisa, 2015. "Reduced $$k$$ k -means clustering with MCA in a low-dimensional space," Computational Statistics, Springer, vol. 30(2), pages 463-475, June.
    8. Naoto Yamashita & Shin-ichi Mayekawa, 2015. "A new biplot procedure with joint classification of objects and variables by fuzzy c-means clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 243-266, September.
    9. Liu, Litao & Cao, Zhi & Liu, Xiaojie & Shi, Lei & Cheng, Shengkui & Liu, Gang, 2020. "Oil security revisited: An assessment based on complex network analysis," Energy, Elsevier, vol. 194(C).
    10. Michael C. Thrun & Alfred Ultsch, 2021. "Using Projection-Based Clustering to Find Distance- and Density-Based Clusters in High-Dimensional Data," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 280-312, July.
    11. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    12. Sundberg, Rolf & Feldmann, Uwe, 2016. "Exploratory factor analysis—Parameter estimation and scores prediction with high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 49-59.
    13. Yoshikazu Terada, 2015. "Strong consistency of factorial $$K$$ K -means clustering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 335-357, April.
    14. Michio Yamamoto, 2012. "Clustering of functional data in a low-dimensional subspace," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 219-247, October.
    15. Cristina Tortora & Mireille Gettler Summa & Marina Marino & Francesco Palumbo, 2016. "Factor probabilistic distance clustering (FPDC): a new clustering method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 441-464, December.
    16. Lars Eldén & Nickolay Trendafilov, 2019. "Semi-sparse PCA," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 164-185, March.
    17. Kensuke Tanioka & Hiroshi Yadohisa, 2019. "Simultaneous Method of Orthogonal Non-metric Non-negative Matrix Factorization and Constrained Non-hierarchical Clustering," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 73-93, April.
    18. Yoshikazu Terada, 2014. "Strong Consistency of Reduced K-means Clustering," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 913-931, December.
    19. Luca Greco & Antonio Lucadamo & Pietro Amenta, 2020. "An Impartial Trimming Approach for Joint Dimension and Sample Reduction," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 769-788, October.
    20. Alfonso Iodice D’Enza & Francesco Palumbo, 2013. "Iterative factor clustering of binary data," Computational Statistics, Springer, vol. 28(2), pages 789-807, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:265-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.