IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1700.html
   My bibliography  Save this paper

Weighted Majorization Algorithms for Weighted Least Squares Decomposition Models

Author

Listed:
  • Groenen, P.J.F.
  • Giaquinto, P.
  • Kiers, H.A.L.

Abstract

For many least-squares decomposition models efficient algorithms are well known. A more difficult problem arises in decomposition models where each residual is weighted by a nonnegative value. A special case is principal components analysis with missing data. Kiers (1997) discusses an algorithm for minimizing weighted decomposition models by iterative majorization. In this paper, we for computing a solution. We will show that the algorithm by Kiers is a special case of our algorithm. Here, we will apply weighted majorization to weighted principal components analysis, robust Procrustes analysis, and logistic bi-additive models of which the two parameter logistic model in item response theory is a special case. Simulation studies show that weighted majorization is generally faster than the method by Kiers by a factor one to four and obtains the same or better quality solutions. For logistic bi-additive models, we propose a new iterative majorization algorithm called logistic majorization.

Suggested Citation

  • Groenen, P.J.F. & Giaquinto, P. & Kiers, H.A.L., 2003. "Weighted Majorization Algorithms for Weighted Least Squares Decomposition Models," Econometric Institute Research Papers EI 2003-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1700
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1700/feweco20030326124022.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henk Kiers, 1997. "Weighted least squares fitting using ordinary least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 62(2), pages 251-266, June.
    2. A. Béguin & C. Glas, 2001. "MCMC estimation and some model-fit analysis of multidimensional IRT models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 541-561, December.
    3. Heiser, Willem J., 1987. "Correspondence analysis with least absolute residuals," Computational Statistics & Data Analysis, Elsevier, vol. 5(4), pages 337-356, September.
    4. Peter Verboon & Willem Heiser, 1992. "Resistant orthogonal procrustes analysis," Journal of Classification, Springer;The Classification Society, vol. 9(2), pages 237-256, December.
    5. Kiers, Henk A. L., 2002. "Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 157-170, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Leeuw, Jan & Lange, Kenneth, 2009. "Sharp quadratic majorization in one dimension," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2471-2484, May.
    2. de Leeuw, Jan, 2006. "Principal component analysis of binary data by iterated singular value decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 21-39, January.
    3. Unkel, S. & Trendafilov, N.T., 2010. "A majorization algorithm for simultaneous parameter estimation in robust exploratory factor analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3348-3358, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michailidis, George & De Leeuw, Jan, 2005. "Homogeneity analysis using absolute deviations," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 587-603, March.
    2. Henk Kiers, 1997. "Weighted least squares fitting using ordinary least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 62(2), pages 251-266, June.
    3. de Leeuw, Jan, 2006. "Principal component analysis of binary data by iterated singular value decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 21-39, January.
    4. Unkel, S. & Trendafilov, N.T., 2010. "A majorization algorithm for simultaneous parameter estimation in robust exploratory factor analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3348-3358, December.
    5. Peter Verboon & Ivo Lans, 1994. "Robust canonical discriminant analysis," Psychometrika, Springer;The Psychometric Society, vol. 59(4), pages 485-507, December.
    6. Qing Li & Long Hai Vo, 2021. "Intangible Capital and Innovation: An Empirical Analysis of Vietnamese Enterprises," Economics Discussion / Working Papers 21-02, The University of Western Australia, Department of Economics.
    7. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
    8. Steven Andrew Culpepper & James Joseph Balamuta, 2017. "A Hierarchical Model for Accuracy and Choice on Standardized Tests," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 820-845, September.
    9. Martijn G. de Jong & Jan-Benedict E. M. Steenkamp & Bernard P. Veldkamp, 2009. "A Model for the Construction of Country-Specific Yet Internationally Comparable Short-Form Marketing Scales," Marketing Science, INFORMS, vol. 28(4), pages 674-689, 07-08.
    10. Willem Heiser, 1991. "A generalized majorization method for least souares multidimensional scaling of pseudodistances that may be negative," Psychometrika, Springer;The Psychometric Society, vol. 56(1), pages 7-27, March.
    11. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    12. Camila Kolling & José Luis Duarte Ribeiro & Donato Morea & Gianpaolo Iazzolino, 2023. "Corporate social responsibility and circular economy from the perspective of consumers: A cross‐cultural analysis in the cosmetic industry," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(3), pages 1226-1243, May.
    13. Ziwei Zhu & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional principal component analysis with heterogeneous missingness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 2000-2031, November.
    14. Christian A. Gregory, 2020. "Are We Underestimating Food Insecurity? Partial Identification with a Bayesian 4-Parameter IRT Model," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 632-655, October.
    15. Gregory Camilli & Jean-Paul Fox, 2015. "An Aggregate IRT Procedure for Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(4), pages 377-401, August.
    16. Krijnen, Wim P., 2006. "Convergence of the sequence of parameters generated by alternating least squares algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 481-489, November.
    17. Namgil Lee & Jong-Min Kim, 2018. "Block tensor train decomposition for missing data estimation," Statistical Papers, Springer, vol. 59(4), pages 1283-1305, December.
    18. Choulakian, V., 2001. "Robust Q-mode principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 37(2), pages 135-150, August.
    19. Francesco Bartolucci & Alessio Farcomeni & Luisa Scaccia, 2017. "A Nonparametric Multidimensional Latent Class IRT Model in a Bayesian Framework," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 952-978, December.
    20. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.