IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v84y2019i1d10.1007_s11336-018-9650-9.html
   My bibliography  Save this article

Semi-sparse PCA

Author

Listed:
  • Lars Eldén

    (Linköping University)

  • Nickolay Trendafilov

    (The Open University)

Abstract

It is well known that the classical exploratory factor analysis (EFA) of data with more observations than variables has several types of indeterminacy. We study the factor indeterminacy and show some new aspects of this problem by considering EFA as a specific data matrix decomposition. We adopt a new approach to the EFA estimation and achieve a new characterization of the factor indeterminacy problem. A new alternative model is proposed, which gives determinate factors and can be seen as a semi-sparse principal component analysis (PCA). An alternating algorithm is developed, where in each step a Procrustes problem is solved. It is demonstrated that the new model/algorithm can act as a specific sparse PCA and as a low-rank-plus-sparse matrix decomposition. Numerical examples with several large data sets illustrate the versatility of the new model, and the performance and behaviour of its algorithmic implementation.

Suggested Citation

  • Lars Eldén & Nickolay Trendafilov, 2019. "Semi-sparse PCA," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 164-185, March.
  • Handle: RePEc:spr:psycho:v:84:y:2019:i:1:d:10.1007_s11336-018-9650-9
    DOI: 10.1007/s11336-018-9650-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-018-9650-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-018-9650-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unkel, S. & Trendafilov, N.T., 2010. "A majorization algorithm for simultaneous parameter estimation in robust exploratory factor analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3348-3358, December.
    2. Nickolay T. Trendafilov & Sara Fontanella & Kohei Adachi, 2017. "Sparse Exploratory Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 778-794, September.
    3. JOURNEE, Michel & NESTEROV, Yurii & RICHTARIK, Peter & SEPULCHRE, Rodolphe, 2010. "Generalized power method for sparse principal component analysis," LIDAM Reprints CORE 2232, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Steffen Unkel & Nickolay T. Trendafilov, 2010. "Simultaneous Parameter Estimation in Exploratory Factor Analysis: An Expository Review," International Statistical Review, International Statistical Institute, vol. 78(3), pages 363-382, December.
    5. Shen, Haipeng & Huang, Jianhua Z., 2008. "Sparse principal component analysis via regularized low rank matrix approximation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1015-1034, July.
    6. James Steiger, 1979. "Factor indeterminacy in the 1930's and the 1970's some interesting parallels," Psychometrika, Springer;The Psychometric Society, vol. 44(2), pages 157-167, June.
    7. repec:ucp:bkecon:9780226316529 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    2. Stegeman, Alwin, 2016. "A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 189-203.
    3. Yixuan Qiu & Jing Lei & Kathryn Roeder, 2023. "Gradient-based sparse principal component analysis with extensions to online learning," Biometrika, Biometrika Trust, vol. 110(2), pages 339-360.
    4. Uno, Kohei & Satomura, Hironori & Adachi, Kohei, 2016. "Fixed factor analysis with clustered factor score constraint," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 265-274.
    5. Jin-Xing Liu & Yong Xu & Chun-Hou Zheng & Yi Wang & Jing-Yu Yang, 2012. "Characteristic Gene Selection via Weighting Principal Components by Singular Values," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    6. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    7. Merola, Giovanni Maria & Chen, Gemai, 2019. "Projection sparse principal component analysis: An efficient least squares method," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 366-382.
    8. Kohei Adachi & Nickolay T. Trendafilov, 2018. "Some Mathematical Properties of the Matrix Decomposition Solution in Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 407-424, June.
    9. Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
    10. Liu, Litao & Cao, Zhi & Liu, Xiaojie & Shi, Lei & Cheng, Shengkui & Liu, Gang, 2020. "Oil security revisited: An assessment based on complex network analysis," Energy, Elsevier, vol. 194(C).
    11. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    12. Amir Beck & Yakov Vaisbourd, 2016. "The Sparse Principal Component Analysis Problem: Optimality Conditions and Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 119-143, July.
    13. Nerea González-García & Ana Belén Nieto-Librero & Purificación Galindo-Villardón, 2023. "CenetBiplot: a new proposal of sparse and orthogonal biplots methods by means of elastic net CSVD," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 5-19, March.
    14. Sundberg, Rolf & Feldmann, Uwe, 2016. "Exploratory factor analysis—Parameter estimation and scores prediction with high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 49-59.
    15. Rosember Guerra-Urzola & Katrijn Van Deun & Juan C. Vera & Klaas Sijtsma, 2021. "A Guide for Sparse PCA: Model Comparison and Applications," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 893-919, December.
    16. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    17. Kohei Uno & Kohei Adachi & Nickolay T. Trendafilov, 2019. "Clustered Common Factor Exploration in Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1048-1067, December.
    18. Liu, Yong-Jin & Wan, Yuqi & Lin, Lanyu, 2024. "An efficient algorithm for Fantope-constrained sparse principal subspace estimation problem," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    19. Rosember Guerra-Urzola & Niek C. Schipper & Anya Tonne & Klaas Sijtsma & Juan C. Vera & Katrijn Deun, 2023. "Sparsifying the least-squares approach to PCA: comparison of lasso and cardinality constraint," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 269-286, March.
    20. Guerra Urzola, Rosember & Van Deun, Katrijn & Vera, J. C. & Sijtsma, K., 2021. "A guide for sparse PCA : Model comparison and applications," Other publications TiSEM 4d35b931-7f49-444b-b92f-a, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:84:y:2019:i:1:d:10.1007_s11336-018-9650-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.