IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/117647.html
   My bibliography  Save this paper

High-dimensional principal component analysis with heterogeneous missingness

Author

Listed:
  • Zhu, Ziwei
  • Wang, Tengyao
  • Samworth, Richard J.

Abstract

We study the problem of high-dimensional Principal Component Analysis (PCA) with missing observations. In a simple, homogeneous observation model, we show that an existing observed-proportion weighted (OPW) estimator of the leading principal components can (nearly) attain the minimax optimal rate of convergence, which exhibits an interesting phase transition. However, deeper investigation reveals that, particularly in more realistic settings where the observation probabilities are heterogeneous, the empirical performance of the OPW estimator can be unsatisfactory; moreover, in the noiseless case, it fails to provide exact recovery of the principal components. Our main contribution, then, is to introduce a new method, which we call primePCA, that is designed to cope with situations where observations may be missing in a heterogeneous manner. Starting from the OPW estimator, primePCA iteratively projects the observed entries of the data matrix onto the column space of our current estimate to impute the missing entries, and then updates our estimate by computing the leading right singular space of the imputed data matrix. We prove that the error of primePCA converges to zero at a geometric rate in the noiseless case, and when the signal strength is not too small. An important feature of our theoretical guarantees is that they depend on average, as opposed to worst-case, properties of the missingness mechanism. Our numerical studies on both simulated and real data reveal that primePCA exhibits very encouraging performance across a wide range of scenarios, including settings where the data are not Missing Completely At Random.

Suggested Citation

  • Zhu, Ziwei & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional principal component analysis with heterogeneous missingness," LSE Research Online Documents on Economics 117647, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:117647
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/117647/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    2. Alexandre Belloni & Mathieu Rosenbaum & Alexandre B. Tsybakov, 2017. "Linear and conic programming estimators in high dimensional errors-in-variables models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 939-956, June.
    3. Henk Kiers, 1997. "Weighted least squares fitting using ordinary least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 62(2), pages 251-266, June.
    4. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    5. Cai, T. Tony & Zhang, Anru, 2016. "Minimax rate-optimal estimation of high-dimensional covariance matrices with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 55-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jungjun Choi & Hyukjun Kwon & Yuan Liao, 2023. "Inference for Low-rank Models without Estimating the Rank," Papers 2311.16440, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziwei Zhu & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional principal component analysis with heterogeneous missingness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 2000-2031, November.
    2. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    3. Raffaella Giacomini & Jason Lu & Katja Smetanina, 2024. "Perceived shocks and impulse responses," CeMMAP working papers 21/24, Institute for Fiscal Studies.
    4. Choi, Sung Hoon & Kim, Donggyu, 2023. "Large volatility matrix analysis using global and national factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1917-1933.
    5. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    6. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," DSSR Discussion Papers 96, Graduate School of Economics and Management, Tohoku University.
    7. Fan, Jianqing & Wang, Weichen & Zhong, Yiqiao, 2019. "Robust covariance estimation for approximate factor models," Journal of Econometrics, Elsevier, vol. 208(1), pages 5-22.
    8. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, Osaka University, revised Mar 2020.
    9. Kim, Donggyu & Wang, Yazhen, 2016. "Sparse PCA-based on high-dimensional Itô processes with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 172-189.
    10. Denis Belomestny & Mathias Trabs & Alexandre Tsybakov, 2017. "Sparse covariance matrix estimation in high-dimensional deconvolution," Working Papers 2017-25, Center for Research in Economics and Statistics.
    11. Yang, Yang & Yang, Yanrong & Shang, Han Lin, 2022. "Feature extraction for functional time series: Theory and application to NIR spectroscopy data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    12. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    13. Jungjun Choi & Hyukjun Kwon & Yuan Liao, 2023. "Inference for Low-rank Models without Estimating the Rank," Papers 2311.16440, arXiv.org, revised Oct 2024.
    14. Wang, Xin & Kong, Lingchen & Wang, Liqun, 2024. "Estimation of sparse covariance matrix via non-convex regularization," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    15. Bai, Jushan & Liao, Yuan, 2012. "Efficient Estimation of Approximate Factor Models," MPRA Paper 41558, University Library of Munich, Germany.
    16. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    17. Fan, Jianqing & Ke, Yuan & Wang, Kaizheng, 2020. "Factor-adjusted regularized model selection," Journal of Econometrics, Elsevier, vol. 216(1), pages 71-85.
    18. Damien Passemier & Zhaoyuan Li & Jianfeng Yao, 2017. "On estimation of the noise variance in high dimensional probabilistic principal component analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 51-67, January.
    19. Kristoffer H. Hellton & Magne Thoresen, 2017. "When and Why are Principal Component Scores a Good Tool for Visualizing High-dimensional Data?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 581-597, September.
    20. He, Yong & Zhang, Mingjuan & Zhang, Xinsheng & Zhou, Wang, 2020. "High-dimensional two-sample mean vectors test and support recovery with factor adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).

    More about this item

    Keywords

    heterogeneous missingness; high-dimensional statistics; iterative projections; missing data; principal component analysis;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:117647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.