Standard errors for bagged and random forest estimators
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lin, Yi & Jeon, Yongho, 2006. "Random Forests and Adaptive Nearest Neighbors," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 578-590, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Federico Zincenko, 2023. "Nonparametric estimation of conditional densities by generalized random forests," Papers 2309.13251, arXiv.org, revised May 2024.
- Lai Xinglin, 2021. "Modelling hetegeneous treatment effects by quantitle local polynomial decision tree and forest," Papers 2111.15320, arXiv.org, revised Mar 2022.
- Gweon, Hyukjun & Li, Shu, 2021. "Batch mode active learning framework and its application on valuing large variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 105-115.
- Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
- Biewen, Martin & Kugler, Philipp, 2021.
"Two-stage least squares random forests with an application to Angrist and Evans (1998),"
Economics Letters, Elsevier, vol. 204(C).
- Biewen, Martin & Kugler, Philipp, 2020. "Two-Stage Least Squares Random Forests with an Application to Angrist and Evans (1998)," IZA Discussion Papers 13613, Institute of Labor Economics (IZA).
- Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
- Valente, Marica, 2023.
"Policy evaluation of waste pricing programs using heterogeneous causal effect estimation,"
Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
- Marica Valente, 2020. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Papers 2010.01105, arXiv.org, revised Nov 2022.
- Marica Valente, 2021. "Policy Evaluation of Waste Pricing Programs Using Heterogeneous Causal Effect Estimation," Discussion Papers of DIW Berlin 1980, DIW Berlin, German Institute for Economic Research.
- Newham, Melissa & Valente, Marica, 2024.
"The cost of influence: How gifts to physicians shape prescriptions and drug costs,"
Journal of Health Economics, Elsevier, vol. 95(C).
- Melissa Newham & Marica Valente, 2022. "The Cost of Influence: How Gifts to Physicians Shape Prescriptions and Drug Costs," Papers 2203.01778, arXiv.org, revised Apr 2023.
- Melissa Newham & Marica Valente, 2023. "The Cost of Influence:How Gifts to Physicians Shape Prescriptions and Drug Costs," Working Papers 2023-03, Faculty of Economics and Statistics, Universität Innsbruck.
- Susan Athey & Julie Tibshirani & Stefan Wager, 2016.
"Generalized Random Forests,"
Papers
1610.01271, arXiv.org, revised Apr 2018.
- Athey, Susan & Tibshirani, Julie & Wager, Stefan, 2017. "Generalized Random Forests," Research Papers 3575, Stanford University, Graduate School of Business.
- Augustine Denteh & Helge Liebert, 2022.
"Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment,"
Papers
2201.07072, arXiv.org, revised Apr 2023.
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," CESifo Working Paper Series 9664, CESifo.
- Denteh, Augustine & Liebert, Helge, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," IZA Discussion Papers 15192, Institute of Labor Economics (IZA).
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
- Guihua Wang & Jun Li & Wallace J. Hopp, 2022. "An Instrumental Variable Forest Approach for Detecting Heterogeneous Treatment Effects in Observational Studies," Management Science, INFORMS, vol. 68(5), pages 3399-3418, May.
- Costanza Naguib, 2023. "Is the Impact of Opening the Borders Heterogeneous?," Diskussionsschriften dp2312, Universitaet Bern, Departement Volkswirtschaft.
- Kugler, Philipp & Biewen, Martin, 2020. "Two-Stage Least Squares Random Forests with a Replication of Angrist and Evans (1998)," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224538, Verein für Socialpolitik / German Economic Association.
- Christian Stetter & Philipp Mennig & Johannes Sauer, 2022. "Using Machine Learning to Identify Heterogeneous Impacts of Agri-Environment Schemes in the EU: A Case Study," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(4), pages 723-759.
- Andreas Gulyas & Krzysztof Pytka, 2019.
"Understanding the Sources of Earnings Losses After Job Displacement: A Machine-Learning Approach,"
CRC TR 224 Discussion Paper Series
crctr224_2019_131, University of Bonn and University of Mannheim, Germany.
- Pytka, Krzysztof & Gulyas, Andreas, 2021. "Understanding the Sources of Earnings Losses After Job Displacement: A Machine-Learning Approach," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242402, Verein für Socialpolitik / German Economic Association.
- Andreas Gulyas & Krzysztof Pytka, 2020. "Understanding the Sources of Earnings Losses After Job Displacement: A Machine-Learning Approach," CRC TR 224 Discussion Paper Series crctr224_2020_131v2, University of Bonn and University of Mannheim, Germany.
- Yiqi Liu & Yuan Qi, 2023. "Using Forests in Multivariate Regression Discontinuity Designs," Papers 2303.11721, arXiv.org, revised Jul 2024.
- David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
- Piccarreta, Raffaella, 2010. "Binary trees for dissimilarity data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1516-1524, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jerinsh Jeyapaulraj & Dhruv Desai & Peter Chu & Dhagash Mehta & Stefano Pasquali & Philip Sommer, 2022. "Supervised similarity learning for corporate bonds using Random Forest proximities," Papers 2207.04368, arXiv.org, revised Oct 2022.
- David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
- Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
- Li, Yiliang & Bai, Xiwen & Wang, Qi & Ma, Zhongjun, 2022. "A big data approach to cargo type prediction and its implications for oil trade estimation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
- Yi Fu & Shuai Cao & Tao Pang, 2020. "A Sustainable Quantitative Stock Selection Strategy Based on Dynamic Factor Adjustment," Sustainability, MDPI, vol. 12(10), pages 1-12, May.
- José María Sarabia & Faustino Prieto & Vanesa Jordá & Stefan Sperlich, 2020. "A Note on Combining Machine Learning with Statistical Modeling for Financial Data Analysis," Risks, MDPI, vol. 8(2), pages 1-14, April.
- Biau, Gérard & Devroye, Luc, 2010. "On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2499-2518, November.
- Olivier BIAU & Angela D´ELIA, 2010. "Euro Area GDP Forecast Using Large Survey Dataset - A Random Forest Approach," EcoMod2010 259600029, EcoMod.
- Cleridy E. Lennert‐Cody & Richard A. Berk, 2007. "Statistical learning procedures for monitoring regulatory compliance: an application to fisheries data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(3), pages 671-689, July.
- Susan Athey & Julie Tibshirani & Stefan Wager, 2016.
"Generalized Random Forests,"
Papers
1610.01271, arXiv.org, revised Apr 2018.
- Athey, Susan & Tibshirani, Julie & Wager, Stefan, 2017. "Generalized Random Forests," Research Papers 3575, Stanford University, Graduate School of Business.
- Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
- Jincheng Shen & Lu Wang & Jeremy M. G. Taylor, 2017. "Estimation of the optimal regime in treatment of prostate cancer recurrence from observational data using flexible weighting models," Biometrics, The International Biometric Society, vol. 73(2), pages 635-645, June.
- Dhruv Desai & Ashmita Dhiman & Tushar Sharma & Deepika Sharma & Dhagash Mehta & Stefano Pasquali, 2023. "Quantifying Outlierness of Funds from their Categories using Supervised Similarity," Papers 2308.06882, arXiv.org.
- Hoora Moradian & Denis Larocque & François Bellavance, 2017. "$$L_1$$ L 1 splitting rules in survival forests," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 671-691, October.
- Arlen Dean & Amirhossein Meisami & Henry Lam & Mark P. Van Oyen & Christopher Stromblad & Nick Kastango, 2022. "Quantile regression forests for individualized surgery scheduling," Health Care Management Science, Springer, vol. 25(4), pages 682-709, December.
- Mingshu Li & Bhaskarjit Sarmah & Dhruv Desai & Joshua Rosaler & Snigdha Bhagat & Philip Sommer & Dhagash Mehta, 2024. "Quantile Regression using Random Forest Proximities," Papers 2408.02355, arXiv.org.
- Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
- Yang, Bill Huajian, 2013. "Modeling Portfolio Risk by Risk Discriminatory Trees and Random Forests," MPRA Paper 57245, University Library of Munich, Germany.
- Yifei Sun & Sy Han Chiou & Mei‐Cheng Wang, 2020. "ROC‐guided survival trees and ensembles," Biometrics, The International Biometric Society, vol. 76(4), pages 1177-1189, December.
- Charles B. Perkins & J. Christina Wang, 2019. "How Magic a Bullet Is Machine Learning for Credit Analysis? An Exploration with FinTech Lending Data," Working Papers 19-16, Federal Reserve Bank of Boston.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:3:p:801-811. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.