IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v99y2021icp105-115.html
   My bibliography  Save this article

Batch mode active learning framework and its application on valuing large variable annuity portfolios

Author

Listed:
  • Gweon, Hyukjun
  • Li, Shu

Abstract

In practice, the valuation of a large volume variable annuity contracts relies on Monte Carlo simulation which is quite computationally intensive. To build a more efficient valuation process, statistical models have been used within a data mining framework that consists of two subsequent stages: the data sampling stage to create a set of representative contracts, and the regression modeling stage to make predictions for the remaining contracts in the portfolio. In this article, we work with a new data mining framework based on active learning, in which we iteratively update the regression model efficiently by selecting the most informative representatives. Our metrics take into consideration both the ambiguity and the diversity of the prediction, which allow us to propose two methods that fit well in this active learning framework. Experimental results demonstrate the effectiveness of the proposed active learning approaches over the random sampling as well as the two-stage data mining framework.

Suggested Citation

  • Gweon, Hyukjun & Li, Shu, 2021. "Batch mode active learning framework and its application on valuing large variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 105-115.
  • Handle: RePEc:eee:insuma:v:99:y:2021:i:c:p:105-115
    DOI: 10.1016/j.insmatheco.2021.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766872100041X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2021.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gweon, Hyukjun & Li, Shu & Mamon, Rogemar, 2020. "An Effective Bias-Corrected Bagging Method For The Valuation Of Large Variable Annuity Portfolios," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 853-871, September.
    2. Bacinello, Anna Rita & Millossovich, Pietro & Olivieri, Annamaria & Pitacco, Ermanno, 2011. "Variable annuities: A unifying valuation approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 285-297.
    3. Sexton, Joseph & Laake, Petter, 2009. "Standard errors for bagged and random forest estimators," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 801-811, January.
    4. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    5. Bauer, Daniel & Kling, Alexander & Russ, Jochen, 2008. "A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities 1," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 621-651, November.
    6. Lin, X. Sheldon & Yang, Shuai, 2020. "Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling approach," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 85-103.
    7. Guojun Gan & Emiliano A. Valdez, 2018. "Regression Modeling for the Valuation of Large Variable Annuity Portfolios," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(1), pages 40-54, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyukjun Gweon & Shu Li & Yangxuan Xu, 2024. "Use of Prediction Bias in Active Learning and Its Application to Large Variable Annuity Portfolios," Risks, MDPI, vol. 12(6), pages 1-14, May.
    2. Jiang, Ruihong & Saunders, David & Weng, Chengguo, 2023. "Two-phase selection of representative contracts for valuation of large variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 293-309.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Ruihong & Saunders, David & Weng, Chengguo, 2023. "Two-phase selection of representative contracts for valuation of large variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 293-309.
    2. Nguyen, Hang & Sherris, Michael & Villegas, Andrés M. & Ziveyi, Jonathan, 2024. "Scenario selection with LASSO regression for the valuation of variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 27-43.
    3. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    4. Thorsten Moenig, 2021. "Efficient valuation of variable annuity portfolios with dynamic programming," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1023-1055, December.
    5. Wing Fung Chong & Haoen Cui & Yuxuan Li, 2021. "Pseudo-Model-Free Hedging for Variable Annuities via Deep Reinforcement Learning," Papers 2107.03340, arXiv.org, revised Oct 2022.
    6. Daniel Doyle & Chris Groendyke, 2018. "Using Neural Networks to Price and Hedge Variable Annuity Guarantees," Risks, MDPI, vol. 7(1), pages 1-19, December.
    7. Riley Jones & Adriana Ocejo, 2019. "Assessing Guaranteed Minimum Income Benefits and Rationality of Exercising Reset Options in Variable," Papers 1911.06123, arXiv.org.
    8. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    9. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Gaussian Process Regression for Pricing Variable Annuities with Stochastic Volatility and Interest Rate," Papers 1903.00369, arXiv.org, revised Jul 2019.
    10. Lin, X. Sheldon & Yang, Shuai, 2020. "Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling approach," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 85-103.
    11. Gan Guojun & Valdez Emiliano A., 2017. "Valuation of large variable annuity portfolios: Monte Carlo simulation and synthetic datasets," Dependence Modeling, De Gruyter, vol. 5(1), pages 354-374, December.
    12. Huang, Yiming & Mamon, Rogemar & Xiong, Heng, 2022. "Valuing guaranteed minimum accumulation benefits by a change of numéraire approach," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 1-26.
    13. Dong, Bing & Xu, Wei & Sevic, Aleksandar & Sevic, Zeljko, 2020. "Efficient willow tree method for variable annuities valuation and risk management☆," International Review of Financial Analysis, Elsevier, vol. 68(C).
    14. Jennifer Alonso Garcia & Michael Sherris & Samuel Thirurajah & Jonathan Ziveyi, 2020. "Taxation and policyholder behavior: the case of guaranteed minimum accumulation benefits," ULB Institutional Repository 2013/307889, ULB -- Universite Libre de Bruxelles.
    15. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2014. "Optimal initiation of a GLWB in a variable annuity: No Arbitrage approach," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 102-111.
    16. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    17. Hangsuck Lee & Hongjun Ha & Minha Lee, 2022. "Piecewise linear boundary crossing probabilities, barrier options, and variable annuities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2248-2272, December.
    18. Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
    19. Delong, Łukasz, 2014. "Pricing and hedging of variable annuities with state-dependent fees," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 24-33.
    20. Xiaolin Luo & Pavel V. Shevchenko, 2015. "Valuation of capital protection options," Papers 1508.00668, arXiv.org, revised May 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:99:y:2021:i:c:p:105-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.