IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.07184.html
   My bibliography  Save this paper

Automatic Doubly Robust Forests

Author

Listed:
  • Zhaomeng Chen
  • Junting Duan
  • Victor Chernozhukov
  • Vasilis Syrgkanis

Abstract

This paper proposes the automatic Doubly Robust Random Forest (DRRF) algorithm for estimating the conditional expectation of a moment functional in the presence of high-dimensional nuisance functions. DRRF combines the automatic debiasing framework using the Riesz representer (Chernozhukov et al., 2022) with non-parametric, forest-based estimation methods for the conditional moment (Athey et al., 2019; Oprescu et al., 2019). In contrast to existing methods, DRRF does not require prior knowledge of the form of the debiasing term nor impose restrictive parametric or semi-parametric assumptions on the target quantity. Additionally, it is computationally efficient for making predictions at multiple query points and significantly reduces runtime compared to methods such as Orthogonal Random Forest (Oprescu et al., 2019). We establish the consistency and asymptotic normality results of DRRF estimator under general assumptions, allowing for the construction of valid confidence intervals. Through extensive simulations in heterogeneous treatment effect (HTE) estimation, we demonstrate the superior performance of DRRF over benchmark approaches in terms of estimation accuracy, robustness, and computational efficiency.

Suggested Citation

  • Zhaomeng Chen & Junting Duan & Victor Chernozhukov & Vasilis Syrgkanis, 2024. "Automatic Doubly Robust Forests," Papers 2412.07184, arXiv.org.
  • Handle: RePEc:arx:papers:2412.07184
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.07184
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    2. Sexton, Joseph & Laake, Petter, 2009. "Standard errors for bagged and random forest estimators," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 801-811, January.
    3. Michael Zimmert & Michael Lechner, 2019. "Nonparametric estimation of causal heterogeneity under high-dimensional confounding," Papers 1908.08779, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    3. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    5. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    6. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    7. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    8. David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
    9. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    10. Martin Huber & Jannis Kueck, 2022. "Testing the identification of causal effects in observational data," Papers 2203.15890, arXiv.org, revised Jun 2023.
    11. Phillip Heiler & Michael C. Knaus, 2021. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," Papers 2110.01427, arXiv.org, revised Aug 2023.
    12. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Papers 2201.07072, arXiv.org, revised Apr 2023.
    13. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    14. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    15. Sasaki, Yuya & Ura, Takuya, 2023. "Estimation and inference for policy relevant treatment effects," Journal of Econometrics, Elsevier, vol. 234(2), pages 394-450.
    16. Rahul Singh, 2020. "Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments," Papers 2012.10315, arXiv.org, revised Mar 2023.
    17. Zimmert, Franziska & Zimmert, Michael, 2020. "Paid parental leave and maternal reemployment: Do part-time subsidies help or harm?," Economics Working Paper Series 2002, University of St. Gallen, School of Economics and Political Science.
    18. Costanza Naguib, 2023. "Is the Impact of Opening the Borders Heterogeneous?," Diskussionsschriften dp2312, Universitaet Bern, Departement Volkswirtschaft.
    19. Federico Zincenko, 2023. "Nonparametric estimation of conditional densities by generalized random forests," Papers 2309.13251, arXiv.org, revised May 2024.
    20. Guihua Wang & Jun Li & Wallace J. Hopp, 2022. "An Instrumental Variable Forest Approach for Detecting Heterogeneous Treatment Effects in Observational Studies," Management Science, INFORMS, vol. 68(5), pages 3399-3418, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.07184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.