IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0191435.html
   My bibliography  Save this article

Estimating population extinction thresholds with categorical classification trees for Louisiana black bears

Author

Listed:
  • Jared S Laufenberg
  • Joseph D Clark
  • Richard B Chandler

Abstract

Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years (φ¯5) was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when φ¯5≥0.90, suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.

Suggested Citation

  • Jared S Laufenberg & Joseph D Clark & Richard B Chandler, 2018. "Estimating population extinction thresholds with categorical classification trees for Louisiana black bears," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-12, January.
  • Handle: RePEc:plo:pone00:0191435
    DOI: 10.1371/journal.pone.0191435
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191435
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0191435&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0191435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lin, Yi & Jeon, Yongho, 2006. "Random Forests and Adaptive Nearest Neighbors," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 578-590, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke-Lin Du & Rengong Zhang & Bingchun Jiang & Jie Zeng & Jiabin Lu, 2025. "Foundations and Innovations in Data Fusion and Ensemble Learning for Effective Consensus," Mathematics, MDPI, vol. 13(4), pages 1-49, February.
    2. Goldstein Benjamin A & Polley Eric C & Briggs Farren B. S., 2011. "Random Forests for Genetic Association Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-34, July.
    3. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    4. Jerinsh Jeyapaulraj & Dhruv Desai & Peter Chu & Dhagash Mehta & Stefano Pasquali & Philip Sommer, 2022. "Supervised similarity learning for corporate bonds using Random Forest proximities," Papers 2207.04368, arXiv.org, revised Oct 2022.
    5. Sexton, Joseph & Laake, Petter, 2009. "Standard errors for bagged and random forest estimators," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 801-811, January.
    6. Joshua Rosaler & Luca Candelori & Vahagn Kirakosyan & Kharen Musaelian & Ryan Samson & Martin T. Wells & Dhagash Mehta & Stefano Pasquali, 2025. "Supervised Similarity for High-Yield Corporate Bonds with Quantum Cognition Machine Learning," Papers 2502.01495, arXiv.org.
    7. Joshua Rosaler & Dhruv Desai & Bhaskarjit Sarmah & Dimitrios Vamvourellis & Deran Onay & Dhagash Mehta & Stefano Pasquali, 2023. "Enhanced Local Explainability and Trust Scores with Random Forest Proximities," Papers 2310.12428, arXiv.org, revised Aug 2024.
    8. David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
    9. Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
    10. Li, Yiliang & Bai, Xiwen & Wang, Qi & Ma, Zhongjun, 2022. "A big data approach to cargo type prediction and its implications for oil trade estimation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    11. Gregory Yampolsky & Dhruv Desai & Mingshu Li & Stefano Pasquali & Dhagash Mehta, 2024. "Case-based Explainability for Random Forest: Prototypes, Critics, Counter-factuals and Semi-factuals," Papers 2408.06679, arXiv.org.
    12. Yi Fu & Shuai Cao & Tao Pang, 2020. "A Sustainable Quantitative Stock Selection Strategy Based on Dynamic Factor Adjustment," Sustainability, MDPI, vol. 12(10), pages 1-12, May.
    13. Ishwaran, Hemant & Kogalur, Udaya B., 2010. "Consistency of random survival forests," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1056-1064, July.
    14. José María Sarabia & Faustino Prieto & Vanesa Jordá & Stefan Sperlich, 2020. "A Note on Combining Machine Learning with Statistical Modeling for Financial Data Analysis," Risks, MDPI, vol. 8(2), pages 1-14, April.
    15. Biau, Gérard & Devroye, Luc, 2010. "On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2499-2518, November.
    16. Olivier BIAU & Angela D´ELIA, 2010. "Euro Area GDP Forecast Using Large Survey Dataset - A Random Forest Approach," EcoMod2010 259600029, EcoMod.
    17. Cleridy E. Lennert‐Cody & Richard A. Berk, 2007. "Statistical learning procedures for monitoring regulatory compliance: an application to fisheries data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(3), pages 671-689, July.
    18. Ruoqing Zhu & Donglin Zeng & Michael R. Kosorok, 2015. "Reinforcement Learning Trees," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1770-1784, December.
    19. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    20. Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0191435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.