Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Verbeke, Geert & Lesaffre, Emmanuel, 1997. "The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 23(4), pages 541-556, February.
- Jara, Alejandro & Jose Garcia-Zattera, Maria & Lesaffre, Emmanuel, 2007. "A Dirichlet process mixture model for the analysis of correlated binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5402-5415, July.
- Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
- Hanson, Timothy E., 2006. "Inference for Mixtures of Finite Polya Tree Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1548-1565, December.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Wendimagegn Ghidey & Emmanuel Lesaffre & Paul Eilers, 2004. "Smooth Random Effects Distribution in a Linear Mixed Model," Biometrics, The International Biometric Society, vol. 60(4), pages 945-953, December.
- Caffo, Brian & An, Ming-Wen & Rohde, Charles, 2007. "Flexible random intercept models for binary outcomes using mixtures of normals," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5220-5235, July.
- Stephen G. Walker & Bani K. Mallick, 1997. "Hierarchical Generalized Linear Models and Frailty Models with Bayesian Nonparametric Mixing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 845-860.
- Emmanuel Lesaffre & Bart Spiessens, 2001. "On the effect of the number of quadrature points in a logistic random effects model: an example," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 325-335.
- Agresti, Alan & Caffo, Brian & Ohman-Strickland, Pamela, 2004. "Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 639-653, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016.
"Default probability estimation via pair copula constructions,"
European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
- Luciana Dalla Valle & Maria Elena De Giuli & Claudio Manelli & Claudia Tarantola, 2013. "Default Probability Estimation via Pair Copula Constructions," DEM Working Papers Series 048, University of Pavia, Department of Economics and Management.
- Luciana Dalla Valle & Maria Elena De Giuli & Claudia Tarantola & Claudio Manelli, 2014. "Default Probability Estimation via Pair Copula Constructions," Papers 1405.1309, arXiv.org, revised Aug 2015.
- Bao, Junshu & Hanson, Timothy E., 2016. "A mean-constrained finite mixture of normals model," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 93-99.
- Christian Schellhase & Göran Kauermann, 2012. "Density estimation and comparison with a penalized mixture approach," Computational Statistics, Springer, vol. 27(4), pages 757-777, December.
- Leonardo Grilli & Carla Rampichini, 2015. "Specification of random effects in multilevel models: a review," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 967-976, May.
- Xu, Peirong & Peng, Heng & Huang, Tao, 2018. "Unsupervised learning of mixture regression models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 44-56.
- Gwennaëlle Mabon, 2014. "Adaptive Estimation of Random-Effects Densities In Linear Mixed-Effects Model," Working Papers 2014-41, Center for Research in Economics and Statistics.
- Göran Kauermann & Renate Meyer, 2014. "Penalized marginal likelihood estimation of finite mixtures of Archimedean copulas," Computational Statistics, Springer, vol. 29(1), pages 283-306, February.
- Zhang, Tonglin, 2019. "General Gaussian estimation," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 234-247.
- Broström, Göran & Holmberg, Henrik, 2011. "Generalized linear models with clustered data: Fixed and random effects models," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3123-3134, December.
- Hosseini, Fatemeh & Eidsvik, Jo & Mohammadzadeh, Mohsen, 2011. "Approximate Bayesian inference in spatial GLMM with skew normal latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1791-1806, April.
- Jaspers, Stijn & Aerts, Marc & Verbeke, Geert & Beloeil, Pierre-Alexandre, 2014. "A new semi-parametric mixture model for interval censored data, with applications in the field of antimicrobial resistance," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 30-42.
- Oedekoven, C.S. & King, R. & Buckland, S.T. & Mackenzie, M.L. & Evans, K.O. & Burger, L.W., 2016. "Using hierarchical centering to facilitate a reversible jump MCMC algorithm for random effects models," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 79-90.
- Shun Yu & Xianzheng Huang, 2017. "Random-intercept misspecification in generalized linear mixed models for binary responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 333-359, August.
- Oludare Samuel Ariyo & Matthew Adekunle Adeleke, 2022. "Simultaneous Bayesian modelling of skew-normal longitudinal measurements with non-ignorable dropout," Computational Statistics, Springer, vol. 37(1), pages 303-325, March.
- Sartori, N. & Severini, T.A. & Marras, E., 2010. "An alternative specification of generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 575-584, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jara, Alejandro & Quintana, Fernando & San Martin, Ernesto, 2008. "Linear mixed models with skew-elliptical distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 5033-5045, July.
- Adeniyi, Isaac Adeola, 2020. "Bayesian Generalized Linear Mixed Effects Models Using Normal-Independent Distributions: Formulation and Applications," MPRA Paper 99165, University Library of Munich, Germany.
- Philip S. Boonstra & Bhramar Mukherjee & Jeremy M. G. Taylor & Mef Nilbert & Victor Moreno & Stephen B. Gruber, 2011. "Bayesian Modeling for Genetic Anticipation in Presence of Mutational Heterogeneity: A Case Study in Lynch Syndrome," Biometrics, The International Biometric Society, vol. 67(4), pages 1627-1637, December.
- Leonardo Grilli & Carla Rampichini, 2015. "Specification of random effects in multilevel models: a review," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 967-976, May.
- Vock, David & Davidian, Marie & Tsiatis, Anastasios, 2014. "SNP_NLMM: A SAS Macro to Implement a Flexible Random Effects Density for Generalized Linear and Nonlinear Mixed Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(c02).
- Jaeun Choi & Donglin Zeng & Andrew F. Olshan & Jianwen Cai, 2018. "Joint modeling of survival time and longitudinal outcomes with flexible random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 126-152, January.
- Ernesto San Martín & Alejandro Jara & Jean-Marie Rolin & Michel Mouchart, 2011. "On the Bayesian Nonparametric Generalization of IRT-Type Models," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 385-409, July.
- Ho, Remus K.W. & Hu, Inchi, 2008. "Flexible modelling of random effects in linear mixed models--A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1347-1361, January.
- Peng Zhang & Peter X.-K. Song & Annie Qu & Tom Greene, 2008. "Efficient Estimation for Patient-Specific Rates of Disease Progression Using Nonnormal Linear Mixed Models," Biometrics, The International Biometric Society, vol. 64(1), pages 29-38, March.
- Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
- Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
- Huang, Xianzheng, 2011. "Detecting random-effects model misspecification via coarsened data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 703-714, January.
- Francis K. C. Hui & Samuel Müller & Alan H. Welsh, 2021. "Random Effects Misspecification Can Have Severe Consequences for Random Effects Inference in Linear Mixed Models," International Statistical Review, International Statistical Institute, vol. 89(1), pages 186-206, April.
- Daniel McNeish & Jeffrey R. Harring & Denis Dumas, 2023. "A multilevel structured latent curve model for disaggregating student and school contributions to learning," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 545-575, June.
- Liang Li & Jun Shao & Mari Palta, 2005. "A Longitudinal Measurement Error Model with a Semicontinuous Covariate," Biometrics, The International Biometric Society, vol. 61(3), pages 824-830, September.
- Zhuang, Haoxin & Diao, Liqun & Yi, Grace Y., 2023. "Polya tree Monte Carlo method," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
- Bruce J. Swihart & Brian S. Caffo & Ciprian M. Crainiceanu, 2014. "A Unifying Framework for Marginalised Random-Intercept Models of Correlated Binary Outcomes," International Statistical Review, International Statistical Institute, vol. 82(2), pages 275-295, August.
- Reyhaneh Rikhtehgaran & Iraj Kazemi, 2013. "Semi-parametric Bayesian estimation of mixed-effects models using the multivariate skew-normal distribution," Computational Statistics, Springer, vol. 28(5), pages 2007-2027, October.
- Rendao Ye & Tonghui Wang & Saowanit Sukparungsee & Arjun Gupta, 2015. "Tests in variance components models under skew-normal settings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 885-904, October.
- Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3441-3458. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.