IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i4p1791-1806.html
   My bibliography  Save this article

Approximate Bayesian inference in spatial GLMM with skew normal latent variables

Author

Listed:
  • Hosseini, Fatemeh
  • Eidsvik, Jo
  • Mohammadzadeh, Mohsen

Abstract

Spatial generalized linear mixed models are common in applied statistics. Most users are satisfied using a Gaussian distribution for the spatial latent variables in this model, but it is unclear whether the Gaussian assumption holds. Wrong Gaussian assumptions cause bias in the parameter estimates and affect the accuracy of spatial predictions. Thus, there is a need for more flexible priors for the latent variables, and to perform efficient inference and spatial prediction in the resulting models. In this paper we use a skew normal prior distribution for the spatial latent variables. We propose new approximate Bayesian methods for the inference and spatial prediction in this model. A key ingredient in our approximations is using the closed skew normal distribution to approximate the full conditional for the latent variables. Our approximate inference and spatial prediction methods are fast and deterministic, using no sampling based strategies. The results indicate that the skew normal prior model can give better predictions than the normal model, while avoiding overfitting.

Suggested Citation

  • Hosseini, Fatemeh & Eidsvik, Jo & Mohammadzadeh, Mohsen, 2011. "Approximate Bayesian inference in spatial GLMM with skew normal latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1791-1806, April.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1791-1806
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00439-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jo Eidsvik & Sara Martino & Håvard Rue, 2009. "Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 1-22, March.
    2. Gelfand, Alan E. & Kottas, Athanasios & MacEachern, Steven N., 2005. "Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1021-1035, September.
    3. Komárek, Arnost & Lesaffre, Emmanuel, 2008. "Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3441-3458, March.
    4. Quinn McNemar, 1947. "Note on the sampling error of the difference between correlated proportions or percentages," Psychometrika, Springer;The Psychometric Society, vol. 12(2), pages 153-157, June.
    5. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    6. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    7. Ainsworth, L.M. & Dean, C.B., 2006. "Approximate inference for disease mapping," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2552-2570, June.
    8. Kim, Ji-Hyun, 2009. "Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3735-3745, September.
    9. Ole F. Christensen & Rasmus Waagepetersen, 2002. "Bayesian Prediction of Spatial Count Data Using Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 58(2), pages 280-286, June.
    10. Hao Zhang, 2002. "On Estimation and Prediction for Spatial Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 58(1), pages 129-136, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahid Tadayon & Mohammad Mehdi Saber, 2023. "A Spatial Logistic Regression Model Based on a Valid Skew-Gaussian Latent Field," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 59-73, March.
    2. Reinaldo B. Arellano-Valle & Adelchi Azzalini, 2022. "Some properties of the unified skew-normal distribution," Statistical Papers, Springer, vol. 63(2), pages 461-487, April.
    3. Marco Minozzo & Luca Bagnato, 2021. "A unified skew‐normal geostatistical factor model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    4. Marco Minozzo, 2011. "On the existence of some skew normal stationary processes," Working Papers 20/2011, University of Verona, Department of Economics.
    5. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    6. Mahmoudian, Behzad, 2018. "On the existence of some skew-Gaussian random field models," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 331-335.
    7. Chénangnon Frédéric Tovissodé & Aliou Diop & Romain Glèlè Kakaï, 2021. "Inference in skew generalized t-link models for clustered binary outcome via a parameter-expanded EM algorithm," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-31, April.
    8. Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
    9. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2012. "Asymptotic normality of posterior distributions for generalized linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 66-77.
    10. Jiangyan Wang & Miao Yang & Anandamayee Majumdar, 2018. "Comparative study and sensitivity analysis of skewed spatial processes," Computational Statistics, Springer, vol. 33(1), pages 75-98, March.
    11. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2011. "A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1748-1759, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2011. "A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1748-1759, April.
    2. Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
    3. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    4. De Oliveira, Victor, 2013. "Hierarchical Poisson models for spatial count data," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 393-408.
    5. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    6. Jing, Liang & De Oliveira, Victor, 2015. "geoCount: An R Package for the Analysis of Geostatistical Count Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i11).
    7. Zhang, Tonglin, 2019. "General Gaussian estimation," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 234-247.
    8. Anandamayee Majumdar & Corinna Gries & Jason Walker, 2011. "A non-stationary spatial generalized linear mixed model approach for studying plant diversity," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1935-1950, October.
    9. Jaewoo Park & Sangwan Lee, 2022. "A projection‐based Laplace approximation for spatial latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    10. Christian Schellhase & Göran Kauermann, 2012. "Density estimation and comparison with a penalized mixture approach," Computational Statistics, Springer, vol. 27(4), pages 757-777, December.
    11. Higgs, Megan Dailey & Hoeting, Jennifer A., 2010. "A clipped latent variable model for spatially correlated ordered categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1999-2011, August.
    12. Victor De Oliveira, 2017. "Geostatistical Binary Data: Models, Properties And Connections," Working Papers 0151mss, College of Business, University of Texas at San Antonio.
    13. Pierrette Chagneau & Frédéric Mortier & Nicolas Picard & Jean-Noël Bacro, 2011. "A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non-Gaussian Random Fields," Biometrics, The International Biometric Society, vol. 67(1), pages 97-105, March.
    14. Marco Minozzo & Clarissa Ferrari, 2013. "Multivariate geostatistical mapping of radioactive contamination in the Maddalena Archipelago (Sardinia, Italy): spatial special issue," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 195-213, April.
    15. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    16. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    17. Xiaotian Zheng & Athanasios Kottas & Bruno Sansó, 2023. "Bayesian geostatistical modeling for discrete‐valued processes," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    18. Marco Minozzo & Clarissa Ferrari, 2011. "Multivariate geostatistical mapping of radioactive contamination in the Maddalena Archipelago (Sardinia, Italy)," Working Papers 21/2011, University of Verona, Department of Economics.
    19. Samira Zahmatkesh & Mohsen Mohammadzadeh, 2021. "Bayesian prediction of spatial data with non-ignorable missingness," Statistical Papers, Springer, vol. 62(5), pages 2247-2268, October.
    20. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1791-1806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.