Robustness to Parametric Assumptions in Missing Data Models
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wooldridge, Jeffrey M., 2007.
"Inverse probability weighted estimation for general missing data problems,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
- Jeffrey M. Wooldridge, 2004. "Inverse probability weighted estimation for general missing data problems," CeMMAP working papers CWP05/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jeffrey M. Wooldridge, 2004. "Inverse probability weighted estimation for general missing data problems," CeMMAP working papers 05/04, Institute for Fiscal Studies.
- Weihua Cao & Anastasios A. Tsiatis & Marie Davidian, 2009. "Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data," Biometrika, Biometrika Trust, vol. 96(3), pages 723-734.
- Joshua Angrist & Jinyong Hahn, 2004. "When to Control for Covariates? Panel Asymptotics for Estimates of Treatment Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 58-72, February.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003.
"Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score,"
Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
- Guido Imbens, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometric Society World Congress 2000 Contributed Papers 1166, Econometric Society.
- Lee, David S. & Card, David, 2008.
"Regression discontinuity inference with specification error,"
Journal of Econometrics, Elsevier, vol. 142(2), pages 655-674, February.
- David S. Lee & David Card, 2006. "Regression Discontinuity Inference with Specification Error," NBER Technical Working Papers 0322, National Bureau of Economic Research, Inc.
- Xiaohong Chen & Han Hong & Alessandro Tarozzi, 2008.
"Semiparametric Efficiency in GMM Models of Nonclassical Measurement Errors, Missing Data and Treatment Effects,"
Cowles Foundation Discussion Papers
1644, Cowles Foundation for Research in Economics, Yale University.
- Chen, Xiaohong & Hong, Han & Tarozzi, Alessandro, 2008. "Semiparametric Efficiency in GMM Models of Nonclassical Measurement Errors, Missing Data and Treatment Effects," Working Papers 42, Yale University, Department of Economics.
- Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012.
"Inverse Probability Tilting for Moment Condition Models with Missing Data,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
- Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2008. "Inverse Probability Tilting for Moment Condition Models with Missing Data," NBER Working Papers 13981, National Bureau of Economic Research, Inc.
- Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
- Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Keisuke Hirano & Jack R. Porter, 2016.
"Panel Asymptotics and Statistical Decision Theory,"
The Japanese Economic Review, Springer, vol. 67(1), pages 33-49, March.
- Keisuke Hirano & Jack R. Porter, 2016. "Panel Asymptotics and Statistical Decision Theory," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 33-49, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
- Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010.
"How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score,"
IZA Discussion Papers
5268, Institute of Labor Economics (IZA).
- Martin Huber & Michael Lechner & Conny Wunsch, 2010. "How to control for many covariates? Reliable estimators based on the propensity score," University of St. Gallen Department of Economics working paper series 2010 2010-30, Department of Economics, University of St. Gallen.
- Sant’Anna, Pedro H.C. & Zhao, Jun, 2020.
"Doubly robust difference-in-differences estimators,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
- Pedro H. C. Sant'Anna & Jun B. Zhao, 2018. "Doubly Robust Difference-in-Differences Estimators," Papers 1812.01723, arXiv.org, revised May 2020.
- Firpo, Sergio Pinheiro & Pinto, Rafael de Carvalho Cayres, 2012. "Combining Strategies for the Estimation of Treatment Effects," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 32(1), March.
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017.
"The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation,"
Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2015. "The finite sample performance of semi- and nonparametric estimators for treatment effects and policy evaluation," FSES Working Papers 454, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2015. "The Finite Sample Performance of Semi- and Nonparametric Estimators for Treatment Effects and Policy Evaluation," IZA Discussion Papers 8756, Institute of Labor Economics (IZA).
- Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022.
"Semiparametrically efficient estimation of the average linear regression function,"
Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
- Bryan S. Graham & Cristine Campos de Xavier Pinto, 2018. "Semiparametrically Efficient Estimation of the Average Linear Regression Function," NBER Working Papers 25234, National Bureau of Economic Research, Inc.
- Bryan S. Graham & Cristine Campos de Xavier Pinto, 2018. "Semiparametrically efficient estimation of the average linear regression function," CeMMAP working papers CWP62/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Bryan S. Graham & Cristine Campos de Xavier Pinto, 2018. "Semiparametrically efficient estimation of the average linear regression function," Papers 1810.12511, arXiv.org.
- Arun Advani & Toru Kitagawa & Tymon Słoczyński, 2019.
"Mostly harmless simulations? Using Monte Carlo studies for estimator selection,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 893-910, September.
- Arun Advani & Toru Kitagawa & Tymon S{l}oczy'nski, 2018. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," Papers 1809.09527, arXiv.org, revised Apr 2019.
- Advani, Arun & Kitagawa, Toru & Słoczyński, Tymon, 2019. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," The Warwick Economics Research Paper Series (TWERPS) 1192, University of Warwick, Department of Economics.
- Advani, Arun & Kitagawa, Toru & Sloczynski, Tymon, 2019. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," CAGE Online Working Paper Series 411, Competitive Advantage in the Global Economy (CAGE).
- Advani, Arun & Sloczynski, Tymon, 2013.
"Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies,"
IZA Discussion Papers
7874, Institute of Labor Economics (IZA).
- Advani, Arun & Kitagawa, Toru & Sloczynski, Tymon, 2018. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," IZA Discussion Papers 11862, Institute of Labor Economics (IZA).
- Arun Advani & Toru Kitagawa & Tymon Sloczynski, 2018. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," Working Papers 124, Brandeis University, Department of Economics and International Business School.
- Arun Advani & Toru Kitagawa & Tymon Sloczynski, 2018. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers CWP56/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Arun Advani & Tymon Sloczynski, 2013. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers CWP64/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Arun Advani & Tymon Słoczyński, 2013. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers 64/13, Institute for Fiscal Studies.
- Huber, Martin, 2019.
"An introduction to flexible methods for policy evaluation,"
FSES Working Papers
504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
- Farrell, Max H., 2015.
"Robust inference on average treatment effects with possibly more covariates than observations,"
Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
- Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
- Ranjbar, Setareh & Salvati, Nicola & Pacini, Barbara, 2023. "Estimating heterogeneous causal effects in observational studies using small area predictors," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
- Zeqin Liu & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Statistical Analysis and Evaluation of Macroeconomic Policies: A Selective Review," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201904, University of Kansas, Department of Economics, revised Mar 2019.
- Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012.
"Inverse Probability Tilting for Moment Condition Models with Missing Data,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
- Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2008. "Inverse Probability Tilting for Moment Condition Models with Missing Data," NBER Working Papers 13981, National Bureau of Economic Research, Inc.
- Kwun Chuen Gary Chan & Sheung Chi Phillip Yam & Zheng Zhang, 2016. "Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 673-700, June.
- Michael C. Knaus, 2021.
"A double machine learning approach to estimate the effects of musical practice on student’s skills,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
- Knaus, Michael C., 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," IZA Discussion Papers 11547, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," Papers 1805.10300, arXiv.org, revised Jan 2019.
- Flores, Carlos A. & Mitnik, Oscar A., 2009.
"Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data,"
IZA Discussion Papers
4451, Institute of Labor Economics (IZA).
- Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-9, University of Miami, Department of Economics.
- Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
- Hao Cheng & Ying Wei, 2018. "A fast imputation algorithm in quantile regression," Computational Statistics, Springer, vol. 33(4), pages 1589-1603, December.
- Chris Muris, 2020. "Efficient GMM Estimation with Incomplete Data," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 518-530, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aecrev:v:101:y:2011:i:3:p:538-43. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.