IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i525p304-317.html
   My bibliography  Save this article

Decomposing Treatment Effect Variation

Author

Listed:
  • Peng Ding
  • Avi Feller
  • Luke Miratrix

Abstract

Understanding and characterizing treatment effect variation in randomized experiments has become essential for going beyond the “black box” of the average treatment effect. Nonetheless, traditional statistical approaches often ignore or assume away such variation. In the context of randomized experiments, this article proposes a framework for decomposing overall treatment effect variation into a systematic component explained by observed covariates and a remaining idiosyncratic component. Our framework is fully randomization-based, with estimates of treatment effect variation that are entirely justified by the randomization itself. Our framework can also account for noncompliance, which is an important practical complication. We make several contributions. First, we show that randomization-based estimates of systematic variation are very similar in form to estimates from fully interacted linear regression and two-stage least squares. Second, we use these estimators to develop an omnibus test for systematic treatment effect variation, both with and without noncompliance. Third, we propose an R2-like measure of treatment effect variation explained by covariates and, when applicable, noncompliance. Finally, we assess these methods via simulation studies and apply them to the Head Start Impact Study, a large-scale randomized experiment. Supplementary materials for this article are available online.

Suggested Citation

  • Peng Ding & Avi Feller & Luke Miratrix, 2019. "Decomposing Treatment Effect Variation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 304-317, January.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:304-317
    DOI: 10.1080/01621459.2017.1407322
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1407322
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1407322?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ranjbar, Setareh & Salvati, Nicola & Pacini, Barbara, 2023. "Estimating heterogeneous causal effects in observational studies using small area predictors," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    2. Undral Byambadalai & Tatsushi Oka & Shota Yasui, 2024. "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction," Papers 2407.16037, arXiv.org.
    3. John Cai & Weinan Wang, 2022. "A Systematic Paradigm for Detecting, Surfacing, and Characterizing Heterogeneous Treatment Effects (HTE)," Papers 2211.01547, arXiv.org.
    4. Paul Goldsmith-Pinkham & Karen Jiang & Zirui Song & Jacob Wallace, 2022. "Measuring Changes in Disparity Gaps: An Application to Health Insurance," AEA Papers and Proceedings, American Economic Association, vol. 112, pages 356-360, May.
    5. Nathan Kallus, 2022. "What's the Harm? Sharp Bounds on the Fraction Negatively Affected by Treatment," Papers 2205.10327, arXiv.org, revised Nov 2022.
    6. Jeffrey Smith, 2022. "Treatment Effect Heterogeneity," Evaluation Review, , vol. 46(5), pages 652-677, October.
    7. Benjamin Lu & Eli Ben-Michael & Avi Feller & Luke Miratrix, 2023. "Is It Who You Are or Where You Are? Accounting for Compositional Differences in Cross-Site Treatment Effect Variation," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 420-453, August.
    8. Alejandro Sanchez-Becerra, 2023. "Robust inference for the treatment effect variance in experiments using machine learning," Papers 2306.03363, arXiv.org.
    9. Apoorva Lal & Wenjing Zheng & Simon Ejdemyr, 2023. "A Framework for Generalization and Transportation of Causal Estimates Under Covariate Shift," Papers 2301.04776, arXiv.org.
    10. Youmi Suk & Hyunseung Kang, 2022. "Robust Machine Learning for Treatment Effects in Multilevel Observational Studies Under Cluster-level Unmeasured Confounding," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 310-343, March.
    11. Nathan Kallus, 2022. "Treatment Effect Risk: Bounds and Inference," Papers 2201.05893, arXiv.org, revised Jul 2022.
    12. Joshua B. Gilbert & James S. Kim & Luke W. Miratrix, 2023. "Modeling Item-Level Heterogeneous Treatment Effects With the Explanatory Item Response Model: Leveraging Large-Scale Online Assessments to Pinpoint the Impact of Educational Interventions," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 889-913, December.
    13. Peter L. Cohen & Colin B. Fogarty, 2022. "Gaussian prepivoting for finite population causal inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 295-320, April.
    14. Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
    15. Raghavendra Addanki & Siddharth Bhandari, 2024. "Limits of Approximating the Median Treatment Effect," Papers 2403.10618, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:304-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.