IDEAS home Printed from https://ideas.repec.org/a/csb/stintr/v16y2015i4p491-510.html
   My bibliography  Save this article

Inferential issues in model-based small area estimation: some new developments

Author

Listed:
  • J. N. K. Rao

Abstract

Small area estimation (SAE) has seen a rapid growth over the past 10 years or so. Earlier work is covered in the author's book (Rao 2003). The main purpose of this paper is to highlight some new developments in model-based SAE since the publication of the author's book. A large part of the new theory addressed practical issues associated with the model-based approach, and we present some of those methods for area level and unit level models. We also briefly mention some new work on synthetic estimation of area means or totals based on implicit models.

Suggested Citation

  • J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
  • Handle: RePEc:csb:stintr:v:16:y:2015:i:4:p:491-510
    as

    Download full text from publisher

    File URL: http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v16_2015_i4_n3.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berg, Emily & Chandra, Hukum, 2014. "Small area prediction for a unit-level lognormal model," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 159-175.
    2. Gauri Datta & Tatsuya Kubokawa & Isabel Molina & J. Rao, 2011. "Estimation of mean squared error of model-based small area estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 367-388, August.
    3. G. Datta & M. Ghosh & R. Steorts & J. Maples, 2011. "Bayesian benchmarking with applications to small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 574-588, November.
    4. J.N.K. Rao, 2008. "Some Methods for Small Area Estimation," Rivista Internazionale di Scienze Sociali, Vita e Pensiero, Pubblicazioni dell'Universita' Cattolica del Sacro Cuore, vol. 116(4), pages 387-405.
    5. D. Pfeffermann & S. Correa, 2012. "Empirical bootstrap bias correction and estimation of prediction mean square error in small area estimation," Biometrika, Biometrika Trust, vol. 99(2), pages 457-472.
    6. Ray Chambers & Nikos Tzavidis, 2006. "M-quantile models for small area estimation," Biometrika, Biometrika Trust, vol. 93(2), pages 255-268, June.
    7. Ray Chambers & Hukum Chandra & Nicola Salvati & Nikos Tzavidis, 2014. "Outlier robust small area estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 47-69, January.
    8. J. D. Opsomer & G. Claeskens & M. G. Ranalli & G. Kauermann & F. J. Breidt, 2008. "Non‐parametric small area estimation using penalized spline regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 265-286, February.
    9. Malay Ghosh & Karabi Sinha & Dalho Kim, 2006. "Empirical and Hierarchical Bayesian Estimation in Finite Population Sampling under Structural Measurement Error Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 591-608, September.
    10. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    11. Lynn M. R. Ybarra & Sharon L. Lohr, 2008. "Small area estimation when auxiliary information is measured with error," Biometrika, Biometrika Trust, vol. 95(4), pages 919-931.
    12. Wang, Junyuan & Fuller, Wayne A., 2003. "The Mean Squared Error of Small Area Predictors Constructed With Estimated Area Variances," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 716-723, January.
    13. Yoshimori, Masayo & Lahiri, Partha, 2014. "A new adjusted maximum likelihood method for the Fay–Herriot small area model," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 281-294.
    14. Li, Huilin & Lahiri, P., 2010. "An adjusted maximum likelihood method for solving small area estimation problems," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 882-892, April.
    15. Florin Vaida & Suzette Blanchard, 2005. "Conditional Akaike information for mixed-effects models," Biometrika, Biometrika Trust, vol. 92(2), pages 351-370, June.
    16. Jiang, Jiming & Nguyen, Thuan & Rao, J. Sunil, 2011. "Best Predictive Small Area Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 732-745.
    17. Pfeffermann, Danny & Sverchkov, Michail, 2007. "Small-Area Estimation Under Informative Probability Sampling of Areas and Within the Selected Areas," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1427-1439, December.
    18. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    19. Mahmoud Torabi & Gauri S. Datta & J. N. K. Rao, 2009. "Empirical Bayes Estimation of Small Area Means under a Nested Error Linear Regression Model with Measurement Errors in the Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 355-369, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph Ouma & Caroline Jeffery & Colletar Anna Awor & Allan Muruta & Joshua Musinguzi & Rhoda K Wanyenze & Sam Biraro & Jonathan Levin & Joseph J Valadez, 2021. "Model-based small area estimation methods and precise district-level HIV prevalence estimates in Uganda," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    2. Rao J. N. K., 2015. "Inferential Issues in Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Statistics Poland, vol. 16(4), pages 491-510, December.
    3. Stefano Marchetti & Caterina Giusti & Nicola Salvati & Monica Pratesi, 2017. "Small area estimation based on M-quantile models in presence of outliers in auxiliary variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 531-555, November.
    4. Nikos Tzavidis & Li‐Chun Zhang & Angela Luna & Timo Schmid & Natalia Rojas‐Perilla, 2018. "From start to finish: a framework for the production of small area official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 927-979, October.
    5. Rong Zhu & Guohua Zou & Hua Liang & Lixing Zhu, 2016. "Penalized Weighted Least Squares to Small Area Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 736-756, September.
    6. repec:csb:stintr:v:17:y:2016:i:1:p:9-24 is not listed on IDEAS
    7. Erciulescu Andreea L. & Fuller Wayne A., 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Statistics Poland, vol. 17(1), pages 9-24, March.
    8. Datta, Gauri S. & Torabi, Mahmoud & Rao, J.N.K. & Liu, Benmei, 2018. "Small area estimation with multiple covariates measured with errors: A nested error linear regression approach of combining multiple surveys," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 49-59.
    9. Benavent, Roberto & Morales, Domingo, 2016. "Multivariate Fay–Herriot models for small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 372-390.
    10. Andreea L. Erciulescu & Wayne A. Fuller, 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 9-24, March.
    11. Yoshimori, Masayo & Lahiri, Partha, 2014. "A new adjusted maximum likelihood method for the Fay–Herriot small area model," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 281-294.
    12. Baldermann, Claudia & Salvati, Nicola & Schmid, Timo, 2016. "Robust small area estimation under spatial non-stationarity," Discussion Papers 2016/5, Free University Berlin, School of Business & Economics.
    13. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2015. "Parametric transformed Fay–Herriot model for small area estimation," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 295-311.
    14. Ranjbar, Setareh & Salvati, Nicola & Pacini, Barbara, 2023. "Estimating heterogeneous causal effects in observational studies using small area predictors," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    15. Priyanka Anjoy, 2023. "Hierarchical Bayes Measurement Error Small Area Model for Estimation of Disaggregated Level Workers Mobility Pattern in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(2), pages 339-361, June.
    16. Tzavidis, Nikos & Zhang, Li-Chun & Luna Hernandez, Angela & Schmid, Timo & Rojas-Perilla, Natalia, 2016. "From start to finish: A framework for the production of small area official statistics," Discussion Papers 2016/13, Free University Berlin, School of Business & Economics.
    17. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    18. Berg, Emily & Chandra, Hukum, 2014. "Small area prediction for a unit-level lognormal model," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 159-175.
    19. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    20. Isabel Molina & Paul Corral & Minh Nguyen, 2022. "Estimation of poverty and inequality in small areas: review and discussion," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1143-1166, December.
    21. Domingo Morales & Joscha Krause & Jan Pablo Burgard, 2022. "On the Use of Aggregate Survey Data for Estimating Regional Major Depressive Disorder Prevalence," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 344-368, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:csb:stintr:v:16:y:2015:i:4:p:491-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beata Witek (email available below). General contact details of provider: https://edirc.repec.org/data/gusgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.