Applications on linear spectral statistics of high-dimensional sample covariance matrix with divergent spectrum
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2022.107617
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Badi H. Baltagi & Chihwa Kao & Fa Wang, 2017.
"Asymptotic power of the sphericity test under weak and strong factors in a fixed effects panel data model,"
Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 853-882, October.
- Badi Baltagi & Chihwa Kao & Fa wang, 2016. "Asymptotic Power of the Sphericity Test Under Weak and Strong Factors in a Fixed Effects Panel Data Model," Center for Policy Research Working Papers 189, Center for Policy Research, Maxwell School, Syracuse University.
- Zhang, Yangchun & Hu, Jiang & Li, Weiming, 2022. "CLT for linear spectral statistics of high-dimensional sample covariance matrices in elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
- Changliang Zou & Liuhua Peng & Long Feng & Zhaojun Wang, 2014. "Multivariate sign-based high-dimensional tests for sphericity," Biometrika, Biometrika Trust, vol. 101(1), pages 229-236.
- Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
- Schott, James R., 2007. "A test for the equality of covariance matrices when the dimension is large relative to the sample sizes," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6535-6542, August.
- Damien Passemier & Zhaoyuan Li & Jianfeng Yao, 2017. "On estimation of the noise variance in high dimensional probabilistic principal component analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 51-67, January.
- Tony Cai & Weidong Liu & Yin Xia, 2013. "Two-Sample Covariance Matrix Testing and Support Recovery in High-Dimensional and Sparse Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 265-277, March.
- Chen, Jiaqi & Zhang, Yangchun & Li, Weiming & Tian, Boping, 2018. "A supplement on CLT for LSS under a large dimensional generalized spiked covariance model," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 57-65.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
- Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.
- Tao Zhang & Zhiwen Wang & Yanling Wan, 2021. "Functional test for high-dimensional covariance matrix, with application to mitochondrial calcium concentration," Statistical Papers, Springer, vol. 62(3), pages 1213-1230, June.
- Deepak Nag Ayyala & Santu Ghosh & Daniel F. Linder, 2022. "Covariance matrix testing in high dimension using random projections," Computational Statistics, Springer, vol. 37(3), pages 1111-1141, July.
- Xie, Jichun & Kang, Jian, 2017. "High-dimensional tests for functional networks of brain anatomic regions," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 70-88.
- Cai, T. Tony & Zhang, Anru, 2016. "Inference for high-dimensional differential correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 107-126.
- Thulin, Måns, 2014. "A high-dimensional two-sample test for the mean using random subspaces," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 26-38.
- Li, Weiming & Qin, Yingli, 2014. "Hypothesis testing for high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 108-119.
- Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
- Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
- Zhidong Bai & Jiang Hu & Chen Wang & Chao Zhang, 2021. "Test on the linear combinations of covariance matrices in high-dimensional data," Statistical Papers, Springer, vol. 62(2), pages 701-719, April.
- Yin, Yanqing, 2021. "Test for high-dimensional mean vector under missing observations," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
- Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.
- Cheng, Guanghui & Liu, Baisen & Tian, Guoliang & Zheng, Shurong, 2020. "Testing proportionality of two high-dimensional covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
- Andrew Martinez, 2017. "Testing for Differences in Path Forecast Accuracy: Forecast-Error Dynamics Matter," Working Papers (Old Series) 1717, Federal Reserve Bank of Cleveland.
- Jinyuan Chang & Wen Zhou & Wen-Xin Zhou & Lan Wang, 2017. "Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering," Biometrics, The International Biometric Society, vol. 73(1), pages 31-41, March.
- He, Daojiang & Liu, Huanyu & Xu, Kai & Cao, Mingxiang, 2021. "Generalized Schott type tests for complete independence in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
- Yin Xia, 2017. "Testing and support recovery of multiple high-dimensional covariance matrices with false discovery rate control," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 782-801, December.
- Zhang, Yangchun & Hu, Jiang & Li, Weiming, 2022. "CLT for linear spectral statistics of high-dimensional sample covariance matrices in elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
- Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.
More about this item
Keywords
Spiked population model; Random matrix theory; Population spectral distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:178:y:2023:i:c:s0167947322001979. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.