IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v183y2021ics0047259x21000099.html
   My bibliography  Save this article

Generalized Schott type tests for complete independence in high dimensions

Author

Listed:
  • He, Daojiang
  • Liu, Huanyu
  • Xu, Kai
  • Cao, Mingxiang

Abstract

In the high dimensional setting, this article explores the problem of testing the complete independence of random variables having a multivariate normal distribution. A natural high-dimensional extension of the test in Schott (2005) is proposed for this purpose. The newly defined tests are asymptotically distribution-free as both the sample size and the number of variables go to infinity and hence have well-known critical values, accommodate situations where the number of variables is not small relative to the sample size and are applicable without specifying an explicit relationship between the number of variables and the sample size. In practice, as the true alternative hypothesis is unknown, it is unclear how to choose a powerful test. For this, we further propose an adaptive test that maintains high power across a wide range of situations. An extensive simulation study shows that the newly proposed tests are comparable to, and in many cases more powerful than, existing tests currently in the literature.

Suggested Citation

  • He, Daojiang & Liu, Huanyu & Xu, Kai & Cao, Mingxiang, 2021. "Generalized Schott type tests for complete independence in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:jmvana:v:183:y:2021:i:c:s0047259x21000099
    DOI: 10.1016/j.jmva.2021.104731
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mao, Guangyu, 2014. "A new test of independence for high-dimensional data," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 14-18.
    2. Guangyu Mao, 2017. "Robust test for independence in high dimensions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(20), pages 10036-10050, October.
    3. Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2013. "A necessary test for complete independence in high dimensions using rank-correlations," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 224-232.
    4. James R. Schott, 2005. "Testing for complete independence in high dimensions," Biometrika, Biometrika Trust, vol. 92(4), pages 951-956, December.
    5. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
    6. Mao, Guangyu, 2018. "Testing independence in high dimensions using Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 128-137.
    7. Mao, Guangyu, 2015. "A note on testing complete independence for high dimensional data," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 82-85.
    8. Gongjun Xu & Lifeng Lin & Peng Wei & Wei Pan, 2016. "An adaptive two-sample test for high-dimensional means," Biometrika, Biometrika Trust, vol. 103(3), pages 609-624.
    9. Tony Cai & Weidong Liu & Yin Xia, 2013. "Two-Sample Covariance Matrix Testing and Support Recovery in High-Dimensional and Sparse Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 265-277, March.
    10. T. Tony Cai & Weidong Liu & Yin Xia, 2014. "Two-sample test of high dimensional means under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 349-372, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
    2. Mao, Guangyu, 2018. "Testing independence in high dimensions using Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 128-137.
    3. Li, Jun, 2023. "Finite sample t-tests for high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    4. Yu, Xiufan & Yao, Jiawei & Xue, Lingzhou, 2024. "Power enhancement for testing multi-factor asset pricing models via Fisher’s method," Journal of Econometrics, Elsevier, vol. 239(2).
    5. Long Feng & Tiefeng Jiang & Binghui Liu & Wei Xiong, 2020. "Max-sum tests for cross-sectional dependence of high-demensional panel data," Papers 2007.03911, arXiv.org.
    6. He, Yong & Zhang, Mingjuan & Zhang, Xinsheng & Zhou, Wang, 2020. "High-dimensional two-sample mean vectors test and support recovery with factor adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    7. Mao, Guangyu, 2015. "A note on testing complete independence for high dimensional data," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 82-85.
    8. Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.
    9. Long Feng & Yanling Ding & Binghui Liu, 2020. "Rank‐based Tests for Cross‐sectional Dependence in Large (N, T) Fixed Effects Panel Data Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(5), pages 1198-1216, October.
    10. Yin Xia, 2017. "Testing and support recovery of multiple high-dimensional covariance matrices with false discovery rate control," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 782-801, December.
    11. Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.
    12. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    13. Thulin, Måns, 2014. "A high-dimensional two-sample test for the mean using random subspaces," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 26-38.
    14. He, Jing & Chen, Song Xi, 2016. "Testing super-diagonal structure in high dimensional covariance matrices," Journal of Econometrics, Elsevier, vol. 194(2), pages 283-297.
    15. Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "A high dimensional two-sample test under a low dimensional factor structure," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 162-170.
    16. Zhang, Yangchun & Zhou, Yirui & Liu, Xiaowei, 2023. "Applications on linear spectral statistics of high-dimensional sample covariance matrix with divergent spectrum," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    17. Zhidong Bai & Jiang Hu & Chen Wang & Chao Zhang, 2021. "Test on the linear combinations of covariance matrices in high-dimensional data," Statistical Papers, Springer, vol. 62(2), pages 701-719, April.
    18. Yin, Yanqing, 2021. "Test for high-dimensional mean vector under missing observations," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    19. Zhengbang Li & Fuxiang Liu & Luanjie Zeng & Guoxin Zuo, 2021. "A stationary bootstrap test about two mean vectors comparison with somewhat dense differences and fewer sample size than dimension," Computational Statistics, Springer, vol. 36(2), pages 941-960, June.
    20. Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:183:y:2021:i:c:s0047259x21000099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.