IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v32y2024icp122-159.html
   My bibliography  Save this article

Spectral Dependence

Author

Listed:
  • Ombao, Hernando
  • Pinto, Marco

Abstract

A general framework for modeling dependence in multivariate time series is presented. Its fundamental approach relies on decomposing each signal inside a system into various frequency components and then studying the dependence properties through these oscillatory activities. The unifying theme across the paper is to explore the strength of dependence and possible lead-lag dynamics through filtering. The proposed framework is capable of representing both linear and non-linear dependencies that could occur instantaneously or after some delay (lagged dependence). Examples for studying dependence between oscillations are illustrated through multichannel electroencephalograms. These examples emphasized that some of the most prominent frequency domain measures such as coherence, partial coherence, and dual-frequency coherence can be derived as special cases under this general framework. Related approaches for modeling dependence through phase-amplitude coupling and causality of (one-sided) filtered signals are also introduced.

Suggested Citation

  • Ombao, Hernando & Pinto, Marco, 2024. "Spectral Dependence," Econometrics and Statistics, Elsevier, vol. 32(C), pages 122-159.
  • Handle: RePEc:eee:ecosta:v:32:y:2024:i:c:p:122-159
    DOI: 10.1016/j.ecosta.2022.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306222001101
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2022.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helmut Lütkepohl, 2005. "New Introduction to Multiple Time Series Analysis," Springer Books, Springer, number 978-3-540-27752-1, September.
    2. Qin, Yun & Chen, Jinyu & Dong, Xuesong, 2021. "Oil prices, policy uncertainty and travel and leisure stocks in China," Energy Economics, Elsevier, vol. 96(C).
    3. Mark Fiecas & Hernando Ombao, 2016. "Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1440-1453, October.
    4. Fried, Roland & Didelez, Vanessa, 2005. "Latent variable analysis and partial correlation graphs for multivariate time series," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 287-296, July.
    5. Giovanni Motta & Hernando Ombao, 2012. "Evolutionary Factor Analysis of Replicated Time Series," Biometrics, The International Biometric Society, vol. 68(3), pages 825-836, September.
    6. G. P. Nason & R. Von Sachs & G. Kroisandt, 2000. "Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 271-292.
    7. Anna Louise Schröder & Hernando Ombao, 2019. "FreSpeD: Frequency-Specific Change-Point Detection in Epileptic Seizure Multi-Channel EEG Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 115-128, January.
    8. Bohm, Hilmar & Ombao, Hernando & von Sachs, Rainer & Sanes, J., 2010. "Classification of multivariate non-stationary signals : the SLEX-shrinkage approach," LIDAM Reprints ISBA 2010036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. P. Fryzlewicz & S. Subba Rao, 2014. "Multiple-change-point detection for auto-regressive conditional heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(5), pages 903-924, November.
    10. Stefano Castruccio & Hernando Ombao & Marc G. Genton, 2018. "A scalable multi‐resolution spatio‐temporal model for brain activation and connectivity in fMRI data," Biometrics, The International Biometric Society, vol. 74(3), pages 823-833, September.
    11. Claudia Kirch & Birte Muhsal & Hernando Ombao, 2015. "Detection of Changes in Multivariate Time Series With Application to EEG Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1197-1216, September.
    12. Ryan Warnick & Michele Guindani & Erik Erhardt & Elena Allen & Vince Calhoun & Marina Vannucci, 2018. "A Bayesian Approach for Estimating Dynamic Functional Network Connectivity in fMRI Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 134-151, January.
    13. Ombao, Hernando & Ringo Ho, Moon-ho, 2006. "Time-dependent frequency domain principal components analysis of multichannel non-stationary signals," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2339-2360, May.
    14. Reboredo, Juan C. & Ugolini, Andrea, 2020. "Price spillovers between rare earth stocks and financial markets," Resources Policy, Elsevier, vol. 66(C).
    15. Jane L. Harvill & Priya Kohli & Nalini Ravishanker, 2017. "Clustering Nonlinear, Nonstationary Time Series Using BSLEX," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 935-955, September.
    16. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.
    17. Ya-Ling Lin & Wen-Yi Chen & Shwn-Huey Shieh, 2020. "Age Structural Transitions and Copayment Policy Effectiveness: Evidence from Taiwan’s National Health Insurance System," IJERPH, MDPI, vol. 17(12), pages 1-17, June.
    18. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    19. Ombao, Hernando & von Sachs, Rainer & Guo, Wensheng, 2005. "SLEX Analysis of Multivariate Nonstationary Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 519-531, June.
    20. José Manuel Aburto & Francisco Villavicencio & Ugofilippo Basellini & Søren Kjærgaard & James W. Vaupel, 2020. "Dynamics of life expectancy and life span equality," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(10), pages 5250-5259, March.
    21. Jeong Hwan Kook & Michele Guindani & Linlin Zhang & Marina Vannucci, 2019. "NPBayes-fMRI: Non-parametric Bayesian General Linear Models for Single- and Multi-Subject fMRI Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 3-21, April.
    22. Hakmook Kang & Hernando Ombao & Crystal Linkletter & Nicole Long & David Badre, 2012. "Spatio-Spectral Mixed-Effects Model for Functional Magnetic Resonance Imaging Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 568-577, June.
    23. Usman, Ojonugwa & Alola, Andrew Adewale & Sarkodie, Samuel Asumadu, 2020. "Assessment of the role of renewable energy consumption and trade policy on environmental degradation using innovation accounting: Evidence from the US," Renewable Energy, Elsevier, vol. 150(C), pages 266-277.
    24. Hsiao-Yun Huang & Hernando Ombao & David S. Stoffer, 2004. "Discrimination and Classification of Nonstationary Time Series Using the SLEX Model," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 763-774, January.
    25. Górecki, Tomasz & Horváth, Lajos & Kokoszka, Piotr, 2018. "Change point detection in heteroscedastic time series," Econometrics and Statistics, Elsevier, vol. 7(C), pages 63-88.
    26. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    3. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    4. Sundararajan, Raanju R., 2021. "Principal component analysis using frequency components of multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    5. Chau, Joris & von Sachs, Rainer, 2022. "Time-varying spectral matrix estimation via intrinsic wavelet regression for surfaces of Hermitian positive definite matrices," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    6. Boland, Joanna & Telesca, Donatello & Sugar, Catherine & Jeste, Shafali & Goldbeck, Cameron & Senturk, Damla, 2022. "A study of longitudinal trends in time-frequency transformations of EEG data during a learning experiment," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    7. Jane L. Harvill & Priya Kohli & Nalini Ravishanker, 2017. "Clustering Nonlinear, Nonstationary Time Series Using BSLEX," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 935-955, September.
    8. Chau, Van Vinh & von Sachs, Rainer, 2018. "Intrinsic wavelet regression for surfaces of Hermitian positive definite matrices," LIDAM Discussion Papers ISBA 2018025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Charles Fontaine & Ron D. Frostig & Hernando Ombao, 2020. "Modeling dependence via copula of functionals of Fourier coefficients," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1125-1144, December.
    10. Giovanni Motta & Hernando Ombao, 2012. "Evolutionary Factor Analysis of Replicated Time Series," Biometrics, The International Biometric Society, vol. 68(3), pages 825-836, September.
    11. Zhelin Huang & Ngai Hang Chan, 2020. "Walsh Fourier Transform of Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 312-340, March.
    12. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    13. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    14. Daniel Spencer & Rajarshi Guhaniyogi & Raquel Prado, 2020. "Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 845-869, December.
    15. Cho, Haeran & Korkas, Karolos K., 2022. "High-dimensional GARCH process segmentation with an application to Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 23(C), pages 187-203.
    16. Hossein Hassani & Mohammad Reza Yeganegi & Emmanuel Sirimal Silva, 2018. "A New Signal Processing Approach for Discrimination of EEG Recordings," Stats, MDPI, vol. 1(1), pages 1-14, November.
    17. Scott A. Bruce & Martica H. Hall & Daniel J. Buysse & Robert T. Krafty, 2018. "Conditional adaptive Bayesian spectral analysis of nonstationary biomedical time series," Biometrics, The International Biometric Society, vol. 74(1), pages 260-269, March.
    18. Sanderson, Jean & Fryzlewicz, Piotr & Jones, M. W., 2010. "Estimating linear dependence between nonstationary time series using the locally stationary wavelet model," LSE Research Online Documents on Economics 29141, London School of Economics and Political Science, LSE Library.
    19. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    20. Zhibiao Zhao, 2015. "Inference for Local Autocorrelations in Locally Stationary Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 296-306, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:32:y:2024:i:c:p:122-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.